Nonstoichiometric Mesoporous Cu1.90S Nanoparticles Hydrothermally Prepared from a Copper Anthranilato Complex Inhibit Cellulases of Phytopathogenic Fungi

Abstract

A copper sulfide precursor of the general formula Cu(C13H9O2NCl)2(H2O)2 {C13H9O2NCl = 2-(2-chlorophenylamino)benzoate} was synthesized and routinely characterized regarding its CHN content, solution molar conductivity, powder X-ray diffraction (PXRD) pattern, magnetic moment and IR spectroscopic data. Copper sulfide Cu1.90S nanoparticles (CSNPs) were hydrothermally grown from this precursor and thiourea. The NPs were characterized by means of elemental analyses, PXRD and transmission electron microscopy (TEM). Brunauer–Emmett–Teller (BET) surface area measurements assigned mesoporous structure and an average pore diameter of 14.342 nm for the as-prepared NPs. The microbial resistance against common antimicrobial agents and the development of new microbial strains are urging factors for finding alternate potent antimicrobial agents. The as-prepared CSNPs may conquer plant diseases, as they exhibited antifungal efficiency against eleven phytopathogenic fungal isolates with Fusarium oxysporum growth reduction reaching 52.63%. Additionally, these NPs strongly inhibited the cellulase enzyme activity produced by Fusarium camptoceras by 51.54% at 30 °C and also inhibited the enzyme activity produced by Trichoderma harzianum by 55.4% at 40 °C leading to promising usefulness of the as prepared CSNPs in improving the quality and quantity of agricultural crops and protecting them from several plant diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S. Ravi, C.V.V.M. Gopi, H.J. Kim, Dalton Trans. 45, 12362 (2016)

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Q. Zhou, L. Liu, Z. Huang, L. Yi, X. Wanga, G. Cao, J. Mater. Chem. A 4, 5505 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    H. Li, F. Xie, W. Li, B.D. Fahlman, M. Chena, W. Li, RSC Adv. 6, 105222 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An, D. Zhou, H. Lin, M.K.H. Leung, S. Yang, Energy Environ. Sci. 10, 593 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    N.R. Kim, J. Choi, H.J. Yoon, M.E. Lee, S.U. Son, H.J. Jin, Y.S. Yun, ACS Sustain. Chem. Eng. 5, 9802 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    J. Li, M. Bloemen, J. Parisi, J. Kolny-Olesiak, ACS Appl. Mater Interfaces 6, 20535 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    D.H. Ha, A.H. Caldwell, M.J. Ward, S. Honrao, K. Mathew, R. Hovden, M.K.A. Koker, D.A. Muller, R.G. Hennig, R.D. Robinson, Nano Lett. 14, 7090 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    P. Roy, S.K. Srivastava, Mater Lett. 61, 1693 (2007)

    CAS  Article  Google Scholar 

  9. 9.

    F. Li, J. Wu, Q. Qin, Z. Li, X. Huang, Powder Technol. 198, 267 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    C. Tan, Y. Zhu, R. Lu, P. Xue, C. Bao, X. Liu, Z. Fei, Y. Zha, Mater Chem. Phys. 91, 44 (2005)

    CAS  Article  Google Scholar 

  11. 11.

    Q. Lu, F. Gao, D. Zhao, Nano Lett. 2, 725 (2002)

    CAS  Article  Google Scholar 

  12. 12.

    E. Esmaeili, M. Sabet, M. Salavati-Niasari, Z. Zarghami, S. Bagher, J. Clust. Sci. 27, 351 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    G. Borkow, J. Gabbay, Curr. Chem. Biol. 3, 272 (2009)

    CAS  Google Scholar 

  14. 14.

    M. McNeil, A.G. Darvill, S.C. Fry, P. Albersheim, Ann. Rev. Biochem. 53, 625 (1984)

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    A. De lasHeras, B. Patino, M.L. Podada, M.J. Martinez, C. Vazquez, M.T.G. Jean, J. Appl. Microbiol. 94, 856 (2003)

    Article  Google Scholar 

  16. 16.

    M.F. Machinandiarena, E.A. Wolski, V. Barrera, G.R. Daleo, A.B. Andreu, Mycopathologia 159, 441 (2005)

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    S. Stølen, F. Grønvold, E.F. Westrum, J. Chem. Thermodyn. 22, 1035 (1990)

    Article  Google Scholar 

  18. 18.

    M.M. Kazinets, Sov. Phys. 14, 599 (1970)

    Google Scholar 

  19. 19.

    A. Sharma, P. Piplani, Chem. Biol. Drug Des. 90, 926 (2017)

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    T.M. Salama, A.H. Ahmed, Z.M. El-Bahy, Microporous Mesoporous Mater. 89, 251 (2006)

    CAS  Article  Google Scholar 

  21. 21.

    L. He, Y. Liu, A. Mustapha, M. Lin, Microbiol. Res. 166, 207 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    C.O. Dimkpa, J.E. McLean, D.W. Britt, A.J. Anderson, Biometals 26, 913 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    S.K. Niture, A. Pant, World J. Microbiol. Biotechnol. 23, 1169 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    V.H. Sunitha, N.D. Devi, C. Srinivas, World J. Agri. Sci. 9, 1 (2013)

    CAS  Google Scholar 

  25. 25.

    W. Geary, Coord. Chem. Rev. 7, 81 (1971)

    CAS  Article  Google Scholar 

  26. 26.

    A. Tarushi, C.P. Raptopoulou, V. Psycharis, D.P. Kessissoglou, A.N. Papadopoulos, G. Psomas, J. Inorg. Biochem. 176, 100 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    A. Tarushi, S. Perontsis, A.G. Hatzidimitriou, A.N. Papadopoulos, D.P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 149, 68 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    K. Kotloff, J. Winickoff, B. Ivanoff, J.D. Clemens, D. Swerdlow, P. Sansonetti, G. Adak, M. Levine, Bull. World Health Organ. 77, 651 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    S. Liu, L. Xu, T. Zhang, G. Ren, Z. Yang, Toxicology 267, 172 (2010)

    CAS  Article  Google Scholar 

  30. 30.

    V. Petranovskii, L. Panina, E. Bogomolova, G. Belostotskaya, Proceedings SPIE. 5218, 244 (2003)

  31. 31.

    Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Coll. Surf. A: Physiochem. Eng. Aspects 284, 364 (2006)

    Article  CAS  Google Scholar 

  32. 32.

    R. Usha, E. Prabu, M. Palaniswamy, C.K. Venil, R. Rajendran, Global J. Biotechnol. Biochem. 5, 153 (2010)

    CAS  Google Scholar 

  33. 33.

    J.L. Watson, T. Fang, C.O. Dimkpa, D.W. Britt, J.E. McLean, A. Jacobson, A.J. Anderson, Biometals 28, 101 (2015)

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    G.N. Agrios, Significance of plant diseases, in Plant Pathology, 4th edn., Academic Press, San Diego, 1997

    Google Scholar 

  35. 35.

    N. Sonker, A.K. Pandey, P. Singh, J. Sci. Food Agric. 95, 1932 (2015)

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    P. Battilani, A. Pietri, T. Bertuzzi, L. Languasco, P. Giorni, Z. Kozakiewicz, J. Food Prot. 66, 633 (2003)

    PubMed  Article  Google Scholar 

  37. 37.

    K.G. Sonia, B.S. Chadha, H.S. Saini, Bioresour. Technol. 96, 1561 (2005)

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    I. Persson, F. Tjerneld, B.B. Hahn-Hagerdal, Process Biochem. 26, 65 (1991)

    CAS  Article  Google Scholar 

  39. 39.

    K. Kathiresan, K. Saravanakumar, R. Anburaj, V. Gomathi, G. Abirami, S.K. Sahu, S. Anandhan, Int. J. Adv. Biotechnol. Res. 2, 382 (2011)

    Google Scholar 

  40. 40.

    A. Di Matteo, D. Bonivento, D. Tsernoglou, L. Federici, F. Cervone, Phytochemistry 67, 528 (2006)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. 41.

    F.I. Garcia-Maceira, A. Di Pietro, M.D. Huertas-Gonzalez, M.C. Ruiz-Roldan, M.I. Roncero, Appl. Environ. Microbiol. 67, 2191 (2001)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Mater Lett. 71, 114 (2012)

    CAS  Article  Google Scholar 

  43. 43.

    A. Llorens, E. Lloret, P. Picouet, A. Fernandez, Int. J. Food Microbiol. 158, 113 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    F.A. Schinner, R. Niederbacher, I. Neuwinger, Plant Soil 57, 85 (1980)

    CAS  Article  Google Scholar 

  45. 45.

    G. Geigera, H. Brandl, G. Furrer, R. Schulina, Soil Biol. Biochem. 30, 1537 (1998)

    Article  Google Scholar 

  46. 46.

    P. Karimi, R.A. Khavari-Nejad, V. Niknam, F. Ghahremaninejad, F. Najafi, Sci. World J. 2012, 615 (2012)

    Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmed B. M. Ibrahim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.B.M., Mahmoud, G.A. Nonstoichiometric Mesoporous Cu1.90S Nanoparticles Hydrothermally Prepared from a Copper Anthranilato Complex Inhibit Cellulases of Phytopathogenic Fungi. J Inorg Organomet Polym 29, 1280–1287 (2019). https://doi.org/10.1007/s10904-019-01091-6

Download citation

Keywords

  • Chalcogenide
  • Non-stoichiometric
  • Nanoparticles
  • Mesoporous
  • Phytopathogenic fungi
  • Cellulase enzyme