Nanoreactor with Core–Shell Architectures Used as Spatiotemporal Compartments for “Undisturbed” Tandem Catalysis

Abstract

The study is aimed at the present challenge in tandem catalysis, addressing how to achieve tandem catalytic ability and meantime to avoid a mutual engagement between the tandem processes. This objective was met by constituting a nanoreactor with bio-inspired compartments made of core-and-shell architectures. The core-and-shell architectures allowed the nanoreactor to spatiotemporally separate the tandem catalytic processes from each other, in virtue of the restriction from mass transfer and the radial distribution of reaction loci. The shell in this nanoreactor admitted a precursor reaction while the core was responsible the following reaction. There was no mutual engagement in the tandem processes, due to the spatiotemporally-driven sequential catalysis in the nanoreactor. In this way, this nanoreactor demonstrated the “undisturbed” tandem catalytic ability. Differing from reported nanoreactors and bi-functional catalysts which often involve a mutual competition and even cross-reactions between the tandem processes, this nanoreactor may partition the tandem catalytic processes and avoid the mutual engagement. The constitution of this nanoreactor suggests a prospect to develop “undisturbed” tandem catalysts for complicated catalytic processes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

References

  1. 1.

    J. Su, C. Xie, C. Chen, Y. Yu, G. Kennedy, G.A. Somorjai, P. Yang, J. Am. Chem. Soc. 138, 11568 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    P.V. Dau, S.M. Cohen, Inorg. Chem. 54, 3134 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    J. Wang, M. Zhu, X. Shen, S. Li, Chem. Eur. J. 21, 7532 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    Y. Ueda, H. Ito, D. Fujita, M. Fujita, J. Am. Chem. Soc. 139, 6090 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    S. Li, Y. Luo, M. Whitcombe, S.A. Piletsky, J. Mater. Chem. A 1, 15102 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    F. Rudroff, M.D. Mihovilovic, H. Groger, R. Snajdrova, H. Iding, U.T. Bornscheuer, Nat. Catal. 1, 12 (2018)

    Article  Google Scholar 

  7. 7.

    C.M. Hong, R.G. Bergman, K.N. Raymond, F.D. Toste, Acc. Chem. Res. 51, 2447 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    B.C. Buddingh, J.C.M. van Hest, Acc. Chem. Res. 50, 769 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    S. Schmidt, K. Castiglione, R. Kourist, Chem. Eur. J. 24, 1755 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    I. Wheeldon, S.D. Minteer, S. Banta, S.C. Barton, P. Atanassov, M. Sigman, Nat. Chem. 8, 299 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    H. Tan, S. Guo, N.D. Dinh, R. Luo, L. Jin, C.H. Chen, Nat. Commun. 8, n663 (2017)

    Article  Google Scholar 

  12. 12.

    W. Wei, T. Zhou, S. Wu, X. Shen, M. Zhu, S. Li, RSC Adv. 8, 1610 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    H. Yang, L. Fu, L. Wei, J. Liang, B.P. Binks, J. Am. Chem. Soc. 2015 137, 1362 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    N. Xue, G. Zhang, X. Zhang, H. Yang, Chem. Commun. 54, 13014 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    J. Lu, J. Dimroth, M. Weck, J. Am. Chem. Soc. 137, 12984 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 127, 9674 (2005)

    CAS  Article  Google Scholar 

  17. 17.

    Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Appl. Catal. B 158, 129 (2014)

    Article  Google Scholar 

  18. 18.

    L.C. Lee, J. Lu, M. Weck, C.W. Jones, ACS Catal. 6, 784 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    Y. Wang, H. Lu, P.F. Xu, Acc. Chem. Res. 48, 1832 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    M. Filice, J.M. Palomo, ACS Catal. 4, 1588 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    C. Zuo, W. Wei, Q. Zhou, S. Wu, S. Li, ChemistrySelect 2, 6149 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    I.A. Smellie, J.K.D. Aldred, B. Bower, A. Cochrane, L. Macfarlane, H.B. McCarron, R. O’Hara, I.L.J. Patterson, M.I. Thomson, J.M. Walker, J. Chem. Educ. 94, 112 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    R.E. Morsi, R.A. Elsalamony, New J. Chem. 40, 2927 (2016)

    CAS  Article  Google Scholar 

  24. 24.

    D. Schwarz, J. Weber, J. Colloid Interface Sci. 498, 335 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Zhou, M. Zhu, S. Li, J. Mater. Chem. A 2, 6834 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    X. Zheng, R. Luo, M. Zhu, S. Li, ChemCatChem 7, 814 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    W. Wei, M. Zhu, X. Shen, S. Wu, S. Li, RSC Adv. 6, 42869 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    Y. Han, X. Yuan, M. Zhu, S. Li, M. Whitcombe, S.A. Piletsky, Adv. Funct. Mater. 24, 4996 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    B. Peng, X. Yuan, M. Zhu, S. Li, Polym. Chem. 5, 562 (2014)

    CAS  Article  Google Scholar 

  30. 30.

    X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, Y. Chen, Sci. Rep. 5, n12555 (2015)

    Article  Google Scholar 

  31. 31.

    S. Li, Y. Ge, A. Tiwari, S. Cao, Small 6, 2453 (2010)

    CAS  Article  Google Scholar 

  32. 32.

    R. Luo, M. Zhu, X. Yuan, S. Li, RSC Adv. 5, 5598 (2015)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to the National Natural Science Foundation of China (Nos. 51473070 and 51808263). Thanks also should be expressed to the Jiangsu Province for support under the innovation-entrepreneurship program (Surencaiban [2015]26).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Songjun Li.

Ethics declarations

Conflict of interest

The authors declare that there is no involvement of any conflict of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 234 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Wu, S., Shen, X. et al. Nanoreactor with Core–Shell Architectures Used as Spatiotemporal Compartments for “Undisturbed” Tandem Catalysis. J Inorg Organomet Polym 29, 1235–1242 (2019). https://doi.org/10.1007/s10904-019-01087-2

Download citation

Keywords

  • Nanoreactors
  • Bio-inspired compartmentalization
  • Undisturbed tandem catalysis
  • Core-and-shell architectures