Effect of Surface Hydrophilicity on the Desulfurization Performance of ZnO/SiO2 Composite


Two kinds of ZnO/SiO2 composite (labled as SZ-1 and SZ-2) were synthesized by sol–gel method and characterized by X-ray diffraction (XRD) patterns, XPS (X-ray photoelectron spectroscopy) spectra and Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra. Water adsorption on the prepared sample was studied by in situ DRIFT. The as-synthesized SZ-1 and SZ-2 sample have different surface property due to the various aging methods in the sample preparation processes, thus showing different results of water adsorption. The adsorption sites (Si atom in Si–O–Si bond) on the surface of SZ-2 for water molecule are occupied by the –OCH3 group and the hydrophilicity of SZ-2 is weaker, in comparison to SZ-1, which inhibits the formation of water film and ultimately decreases desulfurization performance of SZ-2. So, the desulfurization performance can be changed by altering the hydrophilicity of sorbent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    G. Huang, E. He, Z. Wang, H. Fan, J. Shangguan, E. Croiset, Z. Chen, Ind. Eng. Chem. Res. 54, 150806062042006 (2015)

    Google Scholar 

  2. 2.

    K. Polychronopoulou, J.L.G. Fierro, A.M. Efstathiou, Appl. Catal. B 57, 125–137 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    S. Rezaei, A. Tavana, J.A. Sawada, L. Wu, A.S.M. Junaid, S.M. Kuznicki, Ind. Eng. Chem. Res. 51, 12430–12434 (2017)

    Article  Google Scholar 

  4. 4.

    X. Meng, W.D. Jong, R. Pal, A.H.M. Verkooijen, Fuel Process. Technol. 91, 964–981 (2010)

    CAS  Article  Google Scholar 

  5. 5.

    P.R. Westmoreland, D.P. Harrison, Environ. Sci. Technol. 10, 659–661 (1976)

    CAS  Article  Google Scholar 

  6. 6.

    R.B. Slimane, J. Abbasianb, Fuel Process. Technol. 70, 97–113 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    A. Galtayries, J.P. Bonnelle, Surf. Interface Anal. 23, 171–179 (1995)

    CAS  Article  Google Scholar 

  8. 8.

    J. Wang, C. Yang, Y.R. Zhao, H.L. Fan, Z.D. Wang, J. Shangguan, J. Mi, Ind. Eng. Chem. Res. (2017)

  9. 9.

    H.F. Garces, H.M. Galindo, L.J. Garces, J. Hunt, A. Morey, S.L. Suib, Microporous Mesoporous Mater. 127, 190–197 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    S. Jian, S. Modi, L. Ke, R. Lesieur, Energy Fuels 21, 1863–1871 (2007)

    Article  Google Scholar 

  11. 11.

    L.J. Wang, H.L. Fan, J. Shangguan, E. Croiset, Z. Chen, H. Wang, J. Mi, Acs Appl. Mater. Interfaces 6, 21167–21177 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    J.M. Davidson, K. Sohail, Ind. Eng. Chem. Res. 34, 3675–3677 (1995)

    CAS  Article  Google Scholar 

  13. 13.

    B.G. Jr, Science 294, 67–69 (2001)

    Article  Google Scholar 

  14. 14.

    B. Meyer, H. Rabaa, D. Marx, Phys. Chem. Chem. Phys. Pccp 8, 1513–1520 (2006)

    CAS  Article  Google Scholar 

  15. 15.

    G. Liu, Z.H. Huang, F. Kang, J. Hazard. Mater. 215–216, 166 (2012)

    Article  Google Scholar 

  16. 16.

    M. Mureddu, I. Ferino, E. Rombi, M.G. Cutrufello, P. Deiana, A. Ardu, A. Musinu, G. Piccaluga, C. Cannas, Fuel 102, 691–700 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    A. Ievtushenko, O. Khyzhun, I. Shtepliuk, Acta Phys. Pol. 124, 858–861 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, W. Wu, J. Phys. Condens. Matter 15, 2867 (2003)

    CAS  Article  Google Scholar 

  19. 19.

    X. Zhang, C. Shao, Z. Zhang, J. Li, P. Zhang, M. Zhang, J. Mu, Z. Guo, P. Liang, Y. Liu, Acs Appl. Mater. Interfaces 4, 785 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    P. Wang, X. Luo, X. Wu, X. Wei, L. Zhou, X. Zheng, Nanoscale Res. Lett. 20, 646–654 (2013)

    CAS  Google Scholar 

  21. 21.

    L. Fernández, N. Garro, J.E. Haskouri, M. Pérezcabero, J. Alvarezrodríguez, J. Latorre, C. Guillem, A. Beltrán, D. Beltrán, P. Amorós, Nanotechnology 19, 225603 (2008)

    Article  Google Scholar 

  22. 22.

    N. Wang, T. Zhou, J. Wang, H. Yuan, D. Xiao, Analyst 135, 2386–2393 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    H. Yang, Y. Xiao, K. Liu, Q. Feng, J. Am. Ceram. Soc. 91, 1591–1596 (2008)

    CAS  Article  Google Scholar 

  24. 24.

    F. Rubio, J. Rubio, J.L. Oteo, Spectrosc. Lett. 31, 199–219 (1998)

    CAS  Article  Google Scholar 

  25. 25.

    E. Tang, H. Liu, L. Sun, E. Zheng, G. Cheng, Eur. Polym. J. 43, 4210–4218 (2007)

    CAS  Article  Google Scholar 

  26. 26.

    J.C. You, J. Wen, Y.W. Ma, J. Atomic Mol. Phys. 35 (2018)

  27. 27.

    T.R. Forester, R.F. Howe, Cheminform 18 (1987)

  28. 28.

    X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Microporous Mesoporous Mater. 197, 252–261 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, M. Muhler, Phys. Chem. Chem. Phys. 10, 7092–7097 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    D.B. Asay, S.H. Kim, J. Phys. Chem. B 109, 16760–16763 (2005)

    CAS  Article  Google Scholar 

  31. 31.

    M. Nagao, J. Phys. Chem. 75, 3822–3828 (1971)

    CAS  Article  Google Scholar 

  32. 32.

    E. Mccafferty, A.C. Zettlemoyer, Discuss. Faraday Soc. 52, 239–254 (1971)

    Article  Google Scholar 

Download references


This work was financially supported by National Nature Science Fundamental (21576180).

Author information



Corresponding author

Correspondence to HuiLing Fan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yang, C., Zhang, H. et al. Effect of Surface Hydrophilicity on the Desulfurization Performance of ZnO/SiO2 Composite. J Inorg Organomet Polym 29, 1192–1197 (2019). https://doi.org/10.1007/s10904-019-01082-7

Download citation


  • ZnO/SiO2 composite
  • H2S removal
  • Hydrophilicity