Cerium Doped ZnS Nanorods for Photocatalytic Degradation of Turquoise Blue H5G Dye

Abstract

Mesoporous ZnS: Ce nanorod have been synthesized via a co-precipitation process for photocatalytic activity, photostability and photomineralizatión properties. N2 adsorption studies confirm the presence of mesoporous in the ZnS nanoparticles and ZnS: Ce nanorods. The incorporation of Ce increases the photocatalytic efficiency of ZnS and narrowing the bandgap energy. The underlying mechanism of photocatalysis in the dye/ZnS: Ce system, the Ce4+ ions inhibits the electron–hole recombination. Photoconductivity measurements confirm the production of photocharge carrier of ZnS: Ce nanorod and the elimination of electron–hole recombination is validated by photoluminescence spectra. The improved charge separation of ZnS: Ce nanorods produce higher photodegradation than undoped ZnS nanoparticles under sunlight irradiation. An exclusive mesoporous structure of ZnS: Ce nanorod propose for enlightening the light harvest, charge separation, and the performance of photocatalytic degradation. Upon photocatalysis, the sample showed no structural changes after five cycles of Turquoise Blue H5G degradation that were characterized by Fourier transmission infrared and XRD analyses.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    L. Nasi, D. Calestani, T. Besagni, P. Ferro, F. Fabbri, F. Licci, R. Mosca, J. Phys. Chem. C 116, 6920 (2012)

    Article  CAS  Google Scholar 

  2. 2.

    Y. Liu, P. Zhang, B. Tian, J. Zhang, ACS Appl. Mater. Interfaces 7, 13849 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Y. Kim, S.J. Kim, S.P. Cho, B.H. Hong, D.J. Jang, Sci. Rep. 5, 12345 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    J. Lee, Y. Kim, J.K. Kim, S. Kim, D.-H. Min, Appl. Catal. B 205, 433 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    A. Fischereder, M.L. Martinez-Ricci, A. Wolosiuk, W. Haas, F. Hofer, G. Trimmel, G.J.A.A. Soler-Illia, Chem. Mater. 24, 1837 (2012)

    CAS  Article  Google Scholar 

  6. 6.

    Y.Y. Lee, J.H. Moon, Y.S. Choi, G.O. Park, M. Jin, L.Y. Jin, D. Li, J.Y. Lee, S.U. Son, J.M. Kim, J. Phys. Chem. C 121, 5137 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    H.B. Motejadded Emrooz, A.R. Rahmani, Mater. Sci. Semicond. Process. 72, 15 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    R.K. Rana, L. Zhang, J.C. Yu, Y. Mastai, A. Gedanken, Langmuir 19, 5904 (2003)

    CAS  Article  Google Scholar 

  9. 9.

    D. Van Gough, A. Wolosiuk, P.V. Braun, Nano Lett. 9, 1994 (2009)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Z.-X. Sun, Q. Zhang, Y.-H. Lu, Y.-L. Li, Microporous Mesoporous Mater. 109, 376 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    D. Amaranatha Reddy, D.H. Kim, S.J. Rhee, C.U. Jung, B.W. Lee, C. Liu, J. Alloys Compd 588, 596 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    M. Sookhakian, Y.M. Amin, W.J. Basirun, Appl. Surf. Sci. 283, 668 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    B. Joshi, K. Kabariya, S. Nakrani, A. Khan, F.M. Parabia, H.V. Doshi, M.C. Thakur, Am. J. Environ. Prot. 1, 41 (2013)

    Article  CAS  Google Scholar 

  14. 14.

    S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Dalton Trans. 44, 10490 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    S. Harish, M. Sabarinathan, A. Periyanayaga Kristy, J. Archana, M. Navaneethan, H. Ikedaa, Y. Hayakawa, RSC Adv. 7, 26446 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    X. Feng, W. Zhang, H. Deng, Z. Ni, F. Dong, Y. Zhang, J. Hazard. Mater. 322, 223 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    M. Sharma, T. Jain, S. Singh, O.P. Pandey, Sol. Energy 866, 626 (2012)

    Article  CAS  Google Scholar 

  18. 18.

    D.W. Synnott, M.K. Seery, S.J. Hinder, G. Michlits, S.C. Pillai, Appl. Catal. B 130, 106 (2012)

    Google Scholar 

  19. 19.

    D.-J. Zhou, X.-Y. Xie, Y. Zhang, D.-Y. Guo, Y.-J. Zhou, J.-F. Xie, Mater. Res. Express 3, 105023 (2016)

    Article  CAS  Google Scholar 

  20. 20.

    W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. (2017). https://doi.org/10.1155/2017/9378349

    Article  Google Scholar 

  21. 21.

    N. Shanmugam, S. Cholan, G. Viruthagiri, R. Gobi, N. Kannadasan, Appl. Nanosci. 4, 359 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Chen, R. Yin, Q. Wu, J. Nanomater. (2012). https://doi.org/10.1155/2012/560310

    Article  Google Scholar 

  23. 23.

    M. Azarang, A. Shuhaimi, R. Yousefi, A. Moradi Golsheikh, M. Sookhakian, Ceram. Int. 40, 10217 (2014)

    CAS  Article  Google Scholar 

  24. 24.

    M. Azarang, A. Shuhaimi, R. Yousefi, S.P. Jahromi, RSC Adv. (2015). https://doi.org/10.1039/C4RA16767H

    Article  Google Scholar 

  25. 25.

    M. Azarang, M. Sookhakian, M. Aliahmad, M. Dorraj, W.J. Basirun, B.T. Goh, Y. Alias, Int. J. Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.06.082

    Article  Google Scholar 

  26. 26.

    P. Sudhagar, A. Devadoss, K. Nakata, C. Terashima, A. Fujishima, J. Electrochem. Soc. 162, H108 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    S. Shionoya, W.M. Yen, Phosphor Handbook (C.R.C. Press, L.L.C., Boca Raton, 1999), pp. 3–4, 5–6,178, 186, 231–232, 847–848

  28. 28.

    N. Shanmugam, S. Cholan, N. Kannadasan, K. Sathishkumar, K. Deivam, J Mater. Res. Technol. 3, 222 (2014)

    Article  CAS  Google Scholar 

  29. 29.

    N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, Catal. Today 252, 113 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    N. Kannadasan, N. Shanmugam, S. Cholan, K. Sathishkumar, G. Viruthagiri, R. Poonguzhali, Mater. Charact. 97, 37 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    S. Ummartyotin, Y. Infahsaeng, Renew. Sustain. Energy Rev. 55, 17 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    S. Selva kumaar, R. Tamiz selvi, J. Appl. Sci. 8, 2306 (2008)

    Article  Google Scholar 

  33. 33.

    R.L. Pen, J.F. Banfield, Am. Mineral. 83, 1077 (1998)

    Article  Google Scholar 

  34. 34.

    G.L. Hornyak, J. Dutta, H.F. Tibbals, A. Rao, Introduction to Nanoscience (CRC Press, Boca Raton, 2008)

    Google Scholar 

  35. 35.

    N.A. Kotov, Nanoparticle Assemblies and Superstructures (Taylor and Francis, Boca Raton, 2005)

    Google Scholar 

  36. 36.

    H. Xue, Y. Jiang, K. Yuan, T. Yang, J. Hou, C. Cao, K. Feng, X. Wang, Sci. Rep. 6, 29902 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    T. Ahmad, S. Khatoon, K. Coolahan, Bull. Mater. Sci. 36, 997 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    D.P. Lapham, J.L. Lapham, Int. J. Pharm. (2017). https://doi.org/10.1016/j.ijpharm.2017.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    L.C. Nistor, C.D. Mateescu, R. Birjega, S.V. Nistor, Appl. Phys. A 92, 295 (2008)

    CAS  Article  Google Scholar 

  40. 40.

    X. Chen, Z. Wu, Z. Gao, B.-C. Ye, Nanomaterials 7, 258 (2017)

    PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    G.R. Li, X.H. Lu, W.X. Zhao, C.Y. Su, Y.X. Tong, Cryst. Growth Des. 8, 1276 (2008)

    CAS  Article  Google Scholar 

  42. 42.

    N. Prasad, V.M.M. Saipavitra, H. Swaminathan, P. Thangaraj, M.R. Viswanathan, K. Balasubramanian, Appl. Phys. A. 122, 590 (2016)

    Article  CAS  Google Scholar 

  43. 43.

    U.P. Gawai, U.P. Deshpande, B.N. Dole, RSC Adv. 7, 12382 (2017)

    CAS  Article  Google Scholar 

  44. 44.

    C.-J. Chang, K.-L. Huang, J.-K. Chen, K.-W. Chu, M.-H. Hsu, J. Taiwan Inst. Chem. Eng. 55, 82 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    N. Pal, I. Mukherjee, S. Chatterjee, E.-B. Cho, Dalton Trans. 46, 9577 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    I. Deckman, M. Moshonov, S. Obuchovsky, R. Brenerb, G.L. Frey, J. Mater. Chem. A 2, 16746 (2014)

    CAS  Article  Google Scholar 

  47. 47.

    Y. Jiang, Z. Jin, C. Chen, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, RSC Adv. 7, 12856 (2017)

    CAS  Article  Google Scholar 

  48. 48.

    W.M. Yen, M. Raukasa, S.A. Basunb, W. Schaik, U. Happek, J. Lumin. 69, 287 (1996)

    CAS  Article  Google Scholar 

  49. 49.

    K. Goharshadi Elaheh, S. Samiee, P. Nancarrow, J. Colloid Interface Sci. 356, 473 (2011)

    Article  CAS  Google Scholar 

  50. 50.

    K.S. Ranjith, T. Uyar, J. Mater. Chem. A 5, 14206 (2017)

    CAS  Article  Google Scholar 

  51. 51.

    N. Karar, H. Chander, J. Phys. D 38, 3580 (2005)

    CAS  Article  Google Scholar 

  52. 52.

    B. Masenelli, G. Ledoux, D. Amans, C. Dujardin, P. Melinon, Nanotechnology. 23, 305706 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    X. Li, F. Li, Y. Xie, Trends in Water Pollution Research (Nova Science Publishers, 2005), pp. 31–74. ISBN 1-59454-328-3

  54. 54.

    M.E. Khan, M.M. Khan, M.H. Cho, Sci. Rep. 7, 5928 (2017)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Y.-C. Yen, J.-A. Chen, S. Ou, Y.-S. Chen, K.-J. Lin, Sci. Rep. 7, 42524 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    T. Kimura, Y. Yamauchi, N. Miyamoto, Chem. Eur. J. 16, 12069 (2010)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    L. Clarizia, D. Russo, I. Di Somma, R. Andreozzi, R. Marotta, Energies 10, 1624 (2017)

    Article  CAS  Google Scholar 

  58. 58.

    X. Zhou, L. Li, Z. Li, L. Fan, W. Kang, B. Cheng, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7082-4

    Article  Google Scholar 

  59. 59.

    K. Ramesh, A. Rajappa, V. Nandhakumar, Z. Phys. Chem. 231, 1057 (2017)

    CAS  Article  Google Scholar 

  60. 60.

    X. Li, X. Zou, Z. Qu, Q. Zhao, L. Wang, Chemosphere 83, 674 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Z. Zhang, D. Shi, H. Ding, H. Zheng, H. Chen, Int. J. Environ. Sci. Technol. (2015). https://doi.org/10.1007/s13762-015-0762-9

    Article  Google Scholar 

  62. 62.

    A. Naranjo, G. Zambrano, W. Torres, M.E. Gomez, J. Phys. Conf. Ser. 480, 012026 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nachimuthu Suganthi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suganthi, N., Pushpanathan, K. Cerium Doped ZnS Nanorods for Photocatalytic Degradation of Turquoise Blue H5G Dye. J Inorg Organomet Polym 29, 1141–1153 (2019). https://doi.org/10.1007/s10904-019-01077-4

Download citation

Keywords

  • Cerium dopant
  • Nanorods
  • Mesoporous
  • Turquoise Blue H5G
  • Photodegradation