Copper-doped hybrid Agx–Auy@ZnO nanoparticles and their enhanced photocatalytic activities

Abstract

In this paper, we report on the simple polyol synthesis of copper-doped hybrid Agx–Auy@ZnO photocatalysts. The obtained samples have been characterized by X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, transmission electron microscopy and an N2 adsorption study. The experiment results show that Ag, Au and Ag–Au alloy nanoparticles (NPs) successfully load onto the surface of the assembled Cu-doped ZnO. The photocatalytic performances of Cu-doped Agx–Auy@ZnO nanomaterials have been tested using diuron herbicide as a model contaminant under simulated solar light irradiation. The addition of Ag and/or Au nanoparticles to doped ZnO was strongly beneficial to the rate constant displaying a volcano-like pattern as a function of the Ag and Au content. A maximum pseudo-first-order rate constant of 18.55 × 10−3 min−1, 22.70 × 10−3 min−1 and 24.74 × 10−3 min−1 was achieved on Cu-doped Ag0.3@ZnO, Au0.5@ZnO and Ag0.5–Au0.3@ZnO respectively. The Cu-doped Ag0.5–Au0.3@ZnO bimetallic nanoparticles show the highest photocatalytic activity due to the synergistic effect by effective electron transfer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

References

  1. 1.

    G. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41 (2004)

    Google Scholar 

  2. 2.

    P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)

    CAS  Google Scholar 

  3. 3.

    A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies. Desalination 221, 47–69 (2008)

    CAS  Google Scholar 

  4. 4.

    A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)

    CAS  Google Scholar 

  5. 5.

    B. Roig, C. Gonzalez, O. Thomas, Monitoring of phenol photodegradation by ultraviolet spectroscopy. Spectrochim. Acta A 59, 303–307 (2003)

    CAS  Google Scholar 

  6. 6.

    S. Vignesh, A.L. Muppudathi, J.K. Sundar, Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity. J. Mater. Sci. 29, 10784–10801 (2018)

    CAS  Google Scholar 

  7. 7.

    V. Shanmugam, M. Anna Lakshmi, J. Sridhar, K.S. Jeyaperumal, Construction of high efficient g-C3N4 nanosheets combined with Bi2MoO6-Ag photocatalysts for visible-light-driven photocatalytic activity and inactivation’s of bacteria’s. Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.05.009

    Article  Google Scholar 

  8. 8.

    V. Shanmugam, K.S. Jeyaperumal, Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl. Surf. Sci. 449, 617–630 (2018)

    CAS  Google Scholar 

  9. 9.

    R. Fagan, E.D. McCormack, J.S. Hinder, C.S. Pillai, Photocatalytic properties of g-C3N4–TiO2 heterojunctions under UV and visible light conditions. Materials, 9, 286 (2016)

    PubMed Central  Google Scholar 

  10. 10.

    C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl. Catal. A 304, 55–61 (2006)

    CAS  Google Scholar 

  11. 11.

    C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. (Camb) 48, 2858–2860 (2012)

    CAS  Google Scholar 

  12. 12.

    T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50, 2994–3000 (2012)

    CAS  Google Scholar 

  13. 13.

    N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008)

    CAS  PubMed  Google Scholar 

  14. 14.

    P.T. Kumar, V.K. Lakshmanan, T.V. Anilkumar, C. Ramya, P. Reshmi, A.G. Unnikrishnan, S.V. Nair, R. Jayakumar, Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 4, 2618–2629 (2012)

    PubMed  Google Scholar 

  15. 15.

    S. Navarro, J. Fenoll, N. Vela, E. Ruiz, G. Navarro, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J. Hazard. Mater. 172, 1303–1310 (2009)

    CAS  PubMed  Google Scholar 

  16. 16.

    M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed, A. Elhissi, Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloy. Compd. 577, 717–727 (2013)

    CAS  Google Scholar 

  17. 17.

    R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563–13570 (2008)

    CAS  Google Scholar 

  18. 18.

    B. Divband, M. Khatamian, G.R.K. Eslamian, M. Darbandi, Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Appl. Surf. Sci. 284, 80–86 (2013)

    CAS  Google Scholar 

  19. 19.

    C. Dong, K.-L. Wu, M.-R. Li, L. Liu, X.-W. Wei, Synthesis of Ag3PO4–ZnO nanorod composites with high visible-light photocatalytic activity. Catal. Commun. 46, 32–35 (2014)

    CAS  Google Scholar 

  20. 20.

    A.E. Kandjani, M. Mohammadtaheri, A. Thakkar, S.K. Bhargava, V. Bansal, Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing. J. Colloid Interface Sci. 436, 251–257 (2014)

    CAS  PubMed  Google Scholar 

  21. 21.

    L.V. Trandafilović, R.K. Whiffen, S. Dimitrijević-Branković, M. Stoiljković, A.S. Luyt, V. Djoković, ZnO/Ag hybrid nanocubes in alginate biopolymer: synthesis and properties. Chem. Eng. J. 253, 341–349 (2014)

    Google Scholar 

  22. 22.

    A. Casanovas, M. Roig, C. de Leitenburg, A. Trovarelli, J. Llorca, Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. Int. J. Hydrogen Energy 35, 7690–7698 (2010)

    CAS  Google Scholar 

  23. 23.

    R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194–200 (2008)

    CAS  PubMed  Google Scholar 

  24. 24.

    P.C. Nagajyothi, H. Lim, J. Shim, S.B. Rawal, Au nanoparticles supported nanoporous ZnO sphere for enhanced photocatalytic activity under UV-light irradiation. J. Clust. Sci. 27, 1159–1170 (2016)

    CAS  Google Scholar 

  25. 25.

    S. Pearton, Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2, 1057 (2010)

    CAS  PubMed  Google Scholar 

  26. 26.

    D. Wu, X. Fan, K. Tian, J. Dai, H. Liu, Fabrication and photocatalytic properties of Cu2S/T-ZnOw heterostructures via simple polyol process. Trans. Nonferrous Met. Soc. China 22, 1620–1628 (2012)

    CAS  Google Scholar 

  27. 27.

    W. Wu, S. Zhang, X. Xiao, J. Zhou, F. Ren, L. Sun, C. Jiang, Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous alpha-Fe(2)O(3)/ZnO core-shell heterostructures. ACS Appl. Mater. Interfaces 4, 3602–3609 (2012)

    CAS  PubMed  Google Scholar 

  28. 28.

    Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, L. Liu, Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J. Alloy. Compd. 509, 3286–3292 (2011)

    CAS  Google Scholar 

  29. 29.

    M. Misra, P. Kapur, M.K. Nayak, M. Singla, Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core–shell nanostructure. New J. Chem. 38, 4197–4203 (2014)

    CAS  Google Scholar 

  30. 30.

    L. Chen, T. Tran., T.Ca Huang, J. Li, L. Yuan, Q. Cai, Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Appl. Surf. Sci. 273, 82–88 (2013)

    CAS  Google Scholar 

  31. 31.

    A. Fkiri, M.R. Santacruz, A. Mezni, L.S. Smiri, V. Keller, N. Keller, One-pot synthesis of lightly doped Zn1−xCuxO and Au-Zn1−xCuxO with solar light photocatalytic activity in liquid phase. Environ. Sci. Pollut. Res. Int. 24, 15622–15633 (2017)

    CAS  PubMed  Google Scholar 

  32. 32.

    S. Malato, J. Caceres, A.R. Fernandez-Alba, L. Piedra, M.D. Hernando, A. Aguera, J. Vial, Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity. Environ. Sci. Technol. 37, 2516–2524 (2003)

    CAS  PubMed  Google Scholar 

  33. 33.

    S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho, Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J. Ind. Eng. Chem. 20, 1602–1607 (2014)

    CAS  Google Scholar 

  34. 34.

    X. Xin Wang, Y. Kong, H. Yu, Zhang, Synthesis and characterization of water soluble and bifunctional ZnO-Au nanocomposites. J. Phys. Chem. C 111, 3836–3841 (2007)

    Google Scholar 

  35. 35.

    O. Kvítek, J. Siegel, V. Hnatowicz, V. Švorčík, Noble metal nanostructures influence of structure and environment on their optical properties. J. Nanomater. 2013, 1–15 (2013)

    Google Scholar 

  36. 36.

    Q. Zhang, Y.N. Tan, J. Xie, J.Y. Lee, Colloidal synthesis of plasmonic metallic nanoparticles. Plasmonics 4, 9–22 (2008)

    Google Scholar 

  37. 37.

    A.-Q.W. Jun-Hong, Y.-S. Liu, H.-P. Chi, Lin, C.-Y. Mou, Synergistic effect in an Au-Ag Alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 109, 40–43 (2005)

    Google Scholar 

  38. 38.

    Y. Li, B.-P. Zhang, J.-X. Zhao, Enhanced photocatalytic performance of Au–Ag alloy modified ZnO nanocomposite films. J. Alloy. Compd. 586, 663–668 (2014)

    CAS  Google Scholar 

  39. 39.

    Y. Wang, X. Li, G. Lu, G. Chen, Y. Chen, Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology. Mater. Lett. 62, 2359–2362 (2008)

    CAS  Google Scholar 

  40. 40.

    Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep. Purif. Technol. 62, 727–732 (2008)

    CAS  Google Scholar 

  41. 41.

    A. Mezni, A. Mlayah, V. Serin, L.S. Smiri, Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process. Mater. Chem. Phys. 147, 496–503 (2014)

    CAS  Google Scholar 

  42. 42.

    H. Mou, C. Song, Y. Zhou, B. Zhang, D. Wang, Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B 221, 565–573 (2018)

    CAS  Google Scholar 

  43. 43.

    Y. Zhao, L. Liu, H. Kuang, L. Wang, C. Xu, SERS-active Ag@Au core–shell NP assemblies for DNA detection. RSC Adv. 4, 56052–56056 (2014)

    CAS  Google Scholar 

  44. 44.

    D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán, G.L. Puma, Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Appl. Catal. B 178, 74–81 (2015)

    Google Scholar 

  45. 45.

    Y.-C. Chang, J.-Y. Guo, C.-M. Chen, Double-sided plasmonic Au nanoparticles on Cu-doped ZnO/ZnO heterostructures with enhanced photocatalytic activity. Mater. Lett. 209, 60–63 (2017)

    CAS  Google Scholar 

  46. 46.

    A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886–910 (2011)

    CAS  PubMed  Google Scholar 

  47. 47.

    Q. Deng, X. Duan, D.H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang, Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 4, 6030–6037 (2012)

    CAS  PubMed  Google Scholar 

  48. 48.

    J. Lee, H.S. Shim, M. Lee, J.K. Song, D. Lee, Size-controlled electron transfer and photocatalytic activity of ZnO–Au nanoparticle composites. J. Phys. Chem. Lett. 2, 2840–2845 (2011)

    CAS  Google Scholar 

  49. 49.

    N.L. Gavade, S.B. Babar, A.N. Kadam, A.D. Gophane, K.M. Garadkar, Fabrication of M@CuxO/ZnO (M = Ag, Au) heterostructured nanocomposite with enhanced photocatalytic performance under sunlight. Ind. Eng. Chem. Res. 56, 14489–14501 (2017)

    CAS  Google Scholar 

  50. 50.

    S. Kaviya, E. Prasad, Biogenic synthesis of ZnO–Ag nano custard apples for efficient photocatalytic degradation of methylene blue by sunlight irradiation. RSC Adv. 5, 17179–17185 (2015)

    CAS  Google Scholar 

  51. 51.

    G. Foura, A. Soualah, D. Robert, Effect of W doping level on TiO2 on the photocatalytic degradation of Diuron. Water Sci. Technol. 75, 20–27 (2017)

    CAS  PubMed  Google Scholar 

  52. 52.

    D. de la Cruz, J.C. Arevalo, G. Torres, R.G.B. Margulis, C. Ornelas, A. Aguilar-Elguezabal, TiO2 doped with Sm3+ by sol-gel: synthesis, characterization and photocatalytic activity of diuron under solar light. Catal. Today 166, 152–158 (2011)

    Google Scholar 

Download references

Acknowledgements

Mohamed Ali Saidani gratefully acknowledges the support of the Ministry of Higher Education and Scientific Research of Tunisia. The French National Research Agency is also gratefully acknowledged for partially funding this work, while the University of Strasbourg, ICPEES, is thanked for its technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ali Saidani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saidani, M.A., Fkiri, A. & Smiri, L. Copper-doped hybrid Agx–Auy@ZnO nanoparticles and their enhanced photocatalytic activities. J Inorg Organomet Polym 29, 1130–1140 (2019). https://doi.org/10.1007/s10904-019-01075-6

Download citation

Keywords

  • Photocatalysis
  • Hybrid photocatalyst
  • Zinc oxide
  • Copper-doped
  • Silver
  • Gold
  • Polyol process
  • One pot
  • Solar light
  • Diuron
  • Water treatment