Facile Synthesis and Characterization of CoS2–SiO2/Chitosan: The Photocatalysis in Real Samples, and Antimicrobial Evaluation

Abstract

In the present work, The SiO2, and CoS2–SiO2 nanomaterials and incorporated on chitosan was developed as photocatalyst for photocatalytic degradation of toxic compound such as ethidium bromide as a hazard mutagenic pollutant. The SiO2, and CoS2–SiO2 nanomaterials were prepared using the sol–gel/sonochemical method. Therefore, the nano photocatalyst were characterized by various analytical devices such as scanning electron microscopy (SEM), X-ray diffraction and photoelectron (XRD and XPS) analysis, energy dispersive X-ray spectrometer (EDS), UV–Vis absorption spectroscopy and dynamic light scattering, in order to attain the structural properties. The average crystallite size values of SiO2, CoS2–SiO2, and CoS2–SiO2/Chitosan nanocomposites are 0.63, 40.28, and 69.75 nm, respectively. The band-gap values was obtained 8.9–2.7 eV for SiO2, CoS2–SiO2, and CoS2–SiO2/Chitosan nanocomposites, respectively. The photocatalytic performances of the three prepared nano-photocatalyst were examined by UV-light with help the photo-degradation of ethidium bromide. The CoS2–SiO2/Chitosan nanocomposites photocatalyst shows the high amount of photocatalytic degradation (96.00%) in comparison to SiO2, and CoS2–SiO2 nanomaterials. The results demonstrated that the all prepared nano-photocatalyst under UV irradiation was in pH 5 at 40 min. The antifungal and antibacterial of the SiO2, CoS2–SiO2, and CoS2–SiO2/Chitosan were examined. The CoS2–SiO2/Chitosan (high 11.00 mm inhibition zone) has appropriate antimicrobial activity compared with pure SiO2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    A. Tadjarodi, M. Imani, H. Kerdari, Mater. Res. Bull. 48, 935–942 (2013)

    CAS  Google Scholar 

  2. 2.

    P. Dhatshanamurthi, B. Subash, M. Shanthi, Mater. Sci. Semicond. Process. 35, 22–29 (2015)

    CAS  Google Scholar 

  3. 3.

    S. Millesi, M. Schilirò, F. Greco, I. Crupi, G. Impellizzeri, F. Priolo, R.G. Egdell, A. Gulino, Mater. Sci. Semicond. Process. 42, 85–88 (2016)

    CAS  Google Scholar 

  4. 4.

    S. Sudheer Khan, J. Photochem. Photobiol. B 142, 1–7 (2015)

    CAS  PubMed  Google Scholar 

  5. 5.

    A. Kumar, A. Kumar, G. Sharma, M. Naushad, R.V. Saini, J. Clean. Prod. 165, 431–451 (2017)

    CAS  Google Scholar 

  6. 6.

    G. Sharma, B. Thakur, M. Naushad, A.H. Al-Muhtaseb, G.T. Mola, Mater. Chem. Phys. 193, 129–139 (2017)

    CAS  Google Scholar 

  7. 7.

    M. Naushad, G. Sharma, A. Kumar, S. Sharma, M.R. Khan, Int. J. Biol. Macromol. 106, 1–10 (2018)

    CAS  PubMed  Google Scholar 

  8. 8.

    G. Sharma, A. Kumar, M. Naushad, A. Kumar, M.R. Khan, J. Clean. Prod. 172, 2919–2930 (2018)

    CAS  Google Scholar 

  9. 9.

    G. Sharma, A. Kumar, K. Devi, M. Naushad, S. Sharma, F.J. Stadler, Int. J. Biol. Macromol. 114, 295–305 (2018)

    CAS  PubMed  Google Scholar 

  10. 10.

    A. Kumar, M. Naushad, A. Rana, M.R. Khan, Int. J. Biol. Macromol. 104, 1172–1184 (2017)

    CAS  PubMed  Google Scholar 

  11. 11.

    F. Li, J. Wang, L. Zheng, Y. Zhao, X. Sun, J. Power Sources 384, 1–9 (2018)

    CAS  Google Scholar 

  12. 12.

    A.M. Nawar, M.M. Makhlouf, J. Alloys Compd. 767, 1271–1281 (2018)

    CAS  Google Scholar 

  13. 13.

    Y. Zhu, Z. Cheng, Q. Xiang, X. Chen, J. Xu, Sens. Actuators B 248, 785–792 (2017)

    CAS  Google Scholar 

  14. 14.

    F. Luan, S. Zhang, D. Chen, K. Zheng, X. Zhuang, Talanta, 182, 529–535 (2018)

    CAS  PubMed  Google Scholar 

  15. 15.

    M. Govindasamy, S. Shanthi, E. Elaiyappillai, S. Wang, C. Muthamizhchelvan, Electrochim. Acta 293, 328–337 (2019)

    CAS  Google Scholar 

  16. 16.

    G. Ravi Kumar, M. Gopi Krishna, M.C. Rao, Optik, 173, 78–87 (2018)

    CAS  Google Scholar 

  17. 17.

    Z. Ni, W. Zhang, G. Jiang, X. Wang, F. Dong, Chin. J. Catal. 38, 1174–1183 (2017)

    CAS  Google Scholar 

  18. 18.

    Z. Meng, W. Oh, Chin. J. Catal. 33, 1495–1501 (2012)

    CAS  Google Scholar 

  19. 19.

    I. Grčić, D. Vrsaljko, Z. Katančić, S. Papić, J. Water Process Eng. 5, 15–27 (2015)

    Google Scholar 

  20. 20.

    Q. Cao, L. Xiao, J. Li, C. Cao, J. Wang, Powder Technol. 292, 186–194 (2016)

    CAS  Google Scholar 

  21. 21.

    M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, M. Naushad, Colloids Surf. B 157, 456–463 (2017)

    CAS  Google Scholar 

  22. 22.

    G. Sharma, B. Thakur, M. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, G.T. Mola, Environ. Chem. Lett. 16, 113–146 (2018)

    CAS  Google Scholar 

  23. 23.

    G. Sharma, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, F.J. Stadler, Sep. Purif. Technol. 211, 895–908 (2019)

    CAS  Google Scholar 

  24. 24.

    D. Pathania, R. Katwal, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, Int. J. Biol. Macromol. 87, 366–374 (2016)

    CAS  PubMed  Google Scholar 

  25. 25.

    D. Pathania, G. Sharma, M. Naushad, A. Kumar, J. Ind. Eng. Chem. 20, 3596–3603 (2014)

    CAS  Google Scholar 

  26. 26.

    A. Jbeli, A.M. Ferraria, A.M.B. do Rego, S. Boufi, S. Bouattour, Int. J. Biol. Macromol. 116, 1098–1104 (2018)

    CAS  PubMed  Google Scholar 

  27. 27.

    Z.-B. Zheng, J.-J. Sun, A. Fakhri, A. Surendar, A.Z. Ibatova, J.-B. Liu, J. Mater. Sci.: Mater. Electron. 29, 18531–18539 (2018)

    CAS  Google Scholar 

  28. 28.

    S. Yaparatne, C.P. Trippa, A. Amirbahman, J. Hazard. Mater. 346, 208–217 (2018)

    CAS  PubMed  Google Scholar 

  29. 29.

    C. Ren, W. Qiu, H. Zhang, Z. He, Y. Chen, J. Mol. Catal. A: Chem. 398, 215–222 (2015)

    CAS  Google Scholar 

  30. 30.

    P. Eskandari, F. Kazemi, J. Photochem. Photobiol. A 364, 233–239 (2018)

    CAS  Google Scholar 

  31. 31.

    B. Czech, K. Tyszczuk-Rotko, Sep. Purif. Technol. 206, 343–355 (2018)

    CAS  Google Scholar 

  32. 32.

    Z.-D. Meng, K. Ullah, L. Zhu, S. Ye, W.-C. Oh, Mater. Sci. Semicond. Process. 27, 173–180 (2014)

    CAS  Google Scholar 

  33. 33.

    L. Zhu, S.-B. Jo, S. Ye, K. Ullah, Z.-D. Meng, W.-C. Oh, J. Ind. Eng. Chem. 22, 264–271 (2015)

    Google Scholar 

  34. 34.

    A. Jbeli, Z. Hamden, S. Bouattour, A.M. Ferraria, D.S. Conceição, L.F.V. Ferreira, M.M. Chehimi, A.M.B. Rego, M.R. Vilar, S. Boufi, Carbohyd. Polym. 199, 31–40 (2018)

    CAS  Google Scholar 

  35. 35.

    M. Hosseini, A. Pourabadeh, A. Fakhri, J. Hallajzadeh, S. Tahami, Int. J. Biol. Macromol. 118, 2108–2112 (2018)

    CAS  PubMed  Google Scholar 

  36. 36.

    A. Fakhri, V.K. Gupta, H. Rabizadeh, S. Agarwal, S. Tahami, Int. J. Biol. Macromol. 120, 1789–1793 (2018)

    CAS  PubMed  Google Scholar 

  37. 37.

    M. Hosseini, M. Sarafbidabad, A. Fakhri, Z.N. Mohammadi, S. Tahami, Int. J. Biol. Macromol. 118, 1494–1500 (2018)

    CAS  PubMed  Google Scholar 

  38. 38.

    V.K. Gupta, A. Fakhri, S. Agarwal, M. Azad, Int. J. Biol. Macromol. 103, 1–7 (2017)

    CAS  PubMed  Google Scholar 

  39. 39.

    W. Gao, R. Razavi, A. Fakhri, Int. J. Biol. Macromol. 114, 357–362 (2018)

    CAS  PubMed  Google Scholar 

  40. 40.

    M. Cheesbrough, District Laboratory Practice in Tropical Countries, Part 2, 2nd edn. (Cambridge University Press, Fakenham, 2000)

    Google Scholar 

  41. 41.

    C.M. Chang, C.J. Yang, K.-K. Wang, J.-K. Liu, J.C. Huang, Surf. Coat. Technol. 327, 75–82 (2017)

    CAS  Google Scholar 

  42. 42.

    G.F. Cerofolini, C. Galati, L. Renna, Surf. Interface Anal. 35, 968–973 (2003)

    CAS  Google Scholar 

  43. 43.

    S.C. Petitto, M.A. Langell, J. Vac. Sci. Technol. A 22, 1690–1696 (2004)

    CAS  Google Scholar 

  44. 44.

    K. Kotsisa, V. Staemmler, Phys. Chem. Chem. Phys. 8, 1490–1498 (2006)

    Google Scholar 

  45. 45.

    A. Fakhri, R. Khakpour, J. Lumin. 160, 233–237 (2015)

    CAS  Google Scholar 

  46. 46.

    A. Fakhri, D.S. Kahi, J. Photochem. Photobiol. B 166, 259–263 (2017)

    CAS  PubMed  Google Scholar 

  47. 47.

    D. Zheng, Y.-P. Wu, Z.-Y. Li, Z.-B. Cai, RSC Adv. 7, 14060 (2017)

    CAS  Google Scholar 

  48. 48.

    B. Zeng, W. Zeng, W. Liu, C. Jin, J. Phys. Chem. Solids 115, 97–102 (2018)

    CAS  Google Scholar 

  49. 49.

    W. Li, T.X. Wang, X. Dai, X. Wang, C. Zhai, Y. Ma, S. Chang, Solid State Commun. 225, 32–37 (2016)

    CAS  Google Scholar 

  50. 50.

    A.F. Garrido-Castro, M.C. Maestro, J. Alemán, Tetrahedron Lett. 59, 1286–1294 (2018)

    CAS  Google Scholar 

  51. 51.

    K.B. Fontana, G.G. Lenzi, E.C.R. Seára, E.S. Chaves, Ecotoxicol. Environ. Saf. 151, 127–131 (2018)

    CAS  PubMed  Google Scholar 

  52. 52.

    F. Liu, Y. Xie, C. Yu, X. Liu, Y. Dai, L. Liu, Y. Ling, RSC Adv. 48, 24056–24063 (2015)

    Google Scholar 

  53. 53.

    Y.-X. Tan, Y.-P. He, D. Yuan, J. Zhang, Appl. Catal. B 221, 664–669 (2018)

    CAS  Google Scholar 

  54. 54.

    J. Lopez-Penalver, J.M. Sanchez-Polo, C.V. Gómez-Pacheco, J. Rivera-Utrilla, J. Chem. Technol. Biotechnol. 85, 1325–1333 (2010)

    CAS  Google Scholar 

  55. 55.

    C. Gomez-Pacheco, M. Sanchez-Polo, J. Rivera-Utrilla, J. Lopez-Penalver, Chem. Eng. J. 187, 89–95 (2012)

    CAS  Google Scholar 

  56. 56.

    K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compd. 727, 792–820 (2017)

    CAS  Google Scholar 

  57. 57.

    V.L. Prasanna, R. Vijayaraghavan, Mater. Sci. Eng. C, 77, 1027–1034 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of this research by the Islamic Azad University of Central Tehran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Feizbakhsh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fakhri, A., Feizbakhsh, A., Konoz, E. et al. Facile Synthesis and Characterization of CoS2–SiO2/Chitosan: The Photocatalysis in Real Samples, and Antimicrobial Evaluation. J Inorg Organomet Polym 29, 1119–1129 (2019). https://doi.org/10.1007/s10904-019-01074-7

Download citation

Keywords

  • SiO2
  • CoS2
  • Chitosan
  • Photocatalytic activity
  • Antibacterial