Preparation of Rigid Bentonite/PAM Nanocomposites by an Adiabatic Process: Influence of Load Content and Nano-structure on Mechanical Properties and Glass Transition Temperature


Polyacrylamide bentonite nanocomposites were prepared in an aqueous suspension. The suspension was obtained by mixing the dispersion of both bentonite and acrylamide in bidistilled water, and followed by adiabatic processes of radical polymerization with ammonium persulfate as initiator. The percentage by weight of bleaching clay (BC) was fixed at 1%, 3% and 5%. Thin films were obtained using an evaporation solution (thickness of films was in the range 100–300 μm). X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and micro-indentation technique were used to characterize the obtained films. SEM micrographs show an exfoliated structure in polymer composites that originates from the nature and method of polymerization used (a radical adiabatic polymerization under neutral condition). DSC measurements reveal that the glass transition temperature increases with percentage in weight of BC. The mechanical tests confirm that the obtained materials have high values of hardness. We conclude that our materials have a special nano-structure that determines the good mechanical properties. It is also shown that average micro-hardness decreases with increasing amount of BC which implies some changes from the initial structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Z. Orolinoa, A. Mockovčiaková, S. Dolinská, J. Briančin, Arhiv za Tehnicke Nauke 7, 49 (2012)

    Google Scholar 

  2. 2.

    A. Lopez-Galindo, C. Veseras, P. Cerezo, Appl. Clay Sci. 36, 51 (2007)

    CAS  Article  Google Scholar 

  3. 3.

    T.S. Anirudhan, P.S. Suchithra, Chem. Eng. J. 156, 146 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    G.H. Michler, F.J. Baltá-Calleja, 1st Eds. (CRC Press, Taylor and Francis Group, Boca Raton, 2005)

  5. 5.

    F.J. Baltá-Calleja, Adv. Polym. Sci. 66, 117 (2005)

    Article  Google Scholar 

  6. 6.

    F.J. Baltá-Calleja, Trends Polym. Sci. 2, 419 (1994)

    Google Scholar 

  7. 7.

    L. Chun-Ki, C. Hoi-Yan, L. Kin-Tak, Z. Li-Min, H. Man-Wai, D. Huib, Composites B 36, 263 (2005)

    Google Scholar 

  8. 8.

    F. Fu. Shao-Yun, L. Xi-Qiao, Bernd, Y.-W. Mai, Composites B 39, 933 (2008)

    Article  Google Scholar 

  9. 9.

    B. Long, C. Wang, W. Lin, Y. Huang, J. Sun, Compos. Sci. Technol. 67, 2770 (2007)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Hua, L. Shen, H. Yang, M. Wang, T. Liu, T. Lianga, J. Zhanga, Polym. Testing 25, 492 (2006)

    Article  Google Scholar 

  11. 11.

    T.Y. Tsai, M.J. Lin, Y.C. Chuang, P.C. Chou, Mater. Chem. Phys. 138, 230 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    F. Djavanroodi, A.A. Zolfaghari, M. Ebrahimi, K. Nikbin, Acta Metall. Sin. (Engl. Lett) 27, 95 (2014)

    Article  Google Scholar 

  13. 13.

    B. Bouras, A. Mansri, L. Tennouga, B. Grassl, Res. Chem. Intermed. 41, 5839 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    Z. Zhu, O. Jian, S. Paillet, J. Eur. Polym. J. 43, 824 (2007)

    CAS  Article  Google Scholar 

  15. 15.

    S. Belkaid, K. Tebbji, A. Mansri, A. Chetouani, B. Hammouti, Res. Chem. Intermed. 38, 2309 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    A. Mansri, A. Beladraoua, B. Bouras, J. Mater. Environ. Sci. 7, 808 (2016)

    CAS  Google Scholar 

  17. 17.

    A. Mansri, S. Ramdani, Res. Chem. Intermed. 41, 1765 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    H. Haiyan, P. Mingwang, L. Xiucuo, S. Xudong, Z. liuchang, Polym. Int. 53, 225 (2004)

    Article  Google Scholar 

  19. 19.

    E.P. Giannelis, R. Krishnamoorti, E. Manias, Adv. Polym. Sci. 138, 107 (1999)

    CAS  Article  Google Scholar 

  20. 20.

    A.B. Morgan, J.W. Gilman, Appl. Polym. 87, 1329 (2003)

    CAS  Article  Google Scholar 

  21. 21.

    X. Zhao, Q. Zhang, D. Chen, Macromolecules 43, 2357 (2010)

    CAS  Article  Google Scholar 

  22. 22.

    J. Dandurand, V. Samouillan, C. Lacabane, A. Pepe, B. Bochicchio, J. Therm. Anal. Calorim. 120, 1 (2015)

    Article  Google Scholar 

  23. 23.

    M.N.A. Perez, Doctorate Thesis. Institut National Polytechnique de Grenoble France (2008)

  24. 24.

    M.F. Mina, G.H. Michler, F.J. Baltá-Calleja, J. Bangladesh Acad. Sci. 33, 15 (2009)

    CAS  Article  Google Scholar 

  25. 25.

    F. Ania, G. Broza, M.F. Mina, K. Schulte, Z. Roslaniec, F.J. Baltá-Calleja, Compos. Interfaces 13, 33 (2006)

    CAS  Article  Google Scholar 

Download references


The authors thank the National Agency for the Development of University Research (ANDRU) in Algeria for financial support. S. K. is also indebted to IEM-CSIC (Madrid, Spain) and Dr. Fernando Ania for hosting her at the Macromolecular Physics Department during the performance of the surface mechanical experiments.

Author information



Corresponding author

Correspondence to Lahcene Tennouga.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khobzaoui, S., Tennouga, L., Benabadji, I.K. et al. Preparation of Rigid Bentonite/PAM Nanocomposites by an Adiabatic Process: Influence of Load Content and Nano-structure on Mechanical Properties and Glass Transition Temperature. J Inorg Organomet Polym 29, 1111–1118 (2019).

Download citation


  • Polyacrylamide (PAM)
  • Bleaching clay BC
  • Adiabatic processes
  • Micro-indentation
  • Glass temperature