Multifunctional CuO Nanosheets for High-Performance Supercapacitor Electrodes with Enhanced Photocatalytic Activity


This paper reports the facile hydrothermal approach to synthesize porous CuO nanosheets. Their crystalline phase, metallic vibrations, topography, morphology, pore size distribution and magnetic behavior has been studied in detail. Magnetic properties of nanosheets were studied at 300 K using vibrating sample magnetometer which indicates the superparamagnetic behavior with saturation magnetization of 2.46 emu g−1 for as prepared 2D nanostructures. The electrochemical spectroscopy of these sheets reveals that as prepared sheets have a specific capacitance of 1057 F g−1 at a current density of 2 A g−1 which is retained up to 93% even after 4000 cycles. Furthermore, photocatalytic activity along with electrochemical properties of the as-obtained nanostructures were studied for various organic dyes. The high value of saturation magnetization, high specific capacitance and better dye degradation properties of the developed CuO nanosheets make the developed materials good for application in energy storage devices, astonishing electrode material and photocatalyst for degradation of organic dyes in visible light.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Flower-shaped CuO nanostructures: structural, photocatalytic and XANES studies. Catal. Commun. 10, 11–16 (2008)

    CAS  Article  Google Scholar 

  3. 3.

    F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens. Actuators B 134, 761–768 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    O. Lupan, V. Cretu, V. Postica, N. Ababii, O. Polonskyi, V. Kaidas, F. Schütt, Y.K. Mishra, E. Monaico, I. Tiginyanu, V. Sontea, T. Strunskus, F. Faupel, R. Adelung, Enhanced ethanol vapour sensing performances of copper oxide nanocrystals with mixed phases. Sens. Actuators B 224, 434–448 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    K. Krishnamoorthy, S.J. Kim, Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater. Res. Bull. 48, 3136–3139 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitor. RSC Adv. 5, 4443–4447 (2014)

    Google Scholar 

  7. 7.

    M. Kaddes, K. Omri, N. Kouaydi, M. Zemzemi, Structural, electrical and optical properties of ZnO nanoparticle: combined experimental and theoretical study. Appl. Phys. A 124, 518 (2018)

    Article  Google Scholar 

  8. 8.

    X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B 144, 220–225 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Physica B 537, 167–175 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    H. Zhang, J. Feng, M. Zhang, Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor. Mater. Res. Bull. 43, 3221–3226 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    S.C. Bhise, D.V. Awale, M.M. Vadiyar, S.K. Patil, B.N. Kokare, S.S. Kolekar, Facile synthesis of CuO nanosheets as electrode for supercapacitor with long cyclic stability in novel methyl imidazole-based. J. Solid State Electrochem. (2017).

    Article  Google Scholar 

  12. 12.

    Y. Qin, F. Zhang, Y. Chen, Y. Zhou, J. Li, A. Zhu, Y. Luo, Y. Tian, J. Yang, Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J. Phys. Chem. C 116, 11994–12000 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    B. Yin, S. Zhang, Y. Jiao, Y. Liu, F. Qu, X. Wu, Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. CrystEngComm 16, 9999–10005 (2014).

    Google Scholar 

  15. 15.

    G.J. Navathe, D.S. Patil, P.R. Jadhav, D.V. Awale, A.M. Teli, S.C. Bhise, S.S. Kolekar, M.M. Karanjkar, J.H. Kim, P.S. Patil, Rapid synthesis of nanostructured copper oxide for electrochemical supercapacitor based on novel [HPMIM][Cl] ionic liquid. J. Electroanal. Chem. 738, 170–175 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 4851–4860 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    Y.X. Zhang, M. Huang, F. Li, Z.Q. Wen, Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int. J. Electrochem. Sci. 8, 8645–8661 (2013)

    CAS  Google Scholar 

  18. 18.

    Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang, H. Yan et al., Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications. ACS Appl. Mater. Interfaces 7, 9682–9690 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    F. Ghribi, L. El Mir, K. Omri, K. Djessas, Sputtered ZnS thin film from nanoparticles synthesized by hydrothermal route. Optik 127, 3688–3692 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    J. Zhao, R. Liu, Z. Hua, Hydrothermal synthesis and optical properties of single crystalline CuO nanosheets. Superlattices Microstruct. 81, 243–247 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    CAS  Article  Google Scholar 

  22. 22.

    N. Budhiraja, Sapna, V. Kumar, M. Tomar, V. Gupta, S.K. Singh, Facile synthesis of porous CuO nanosheets as high-performance NO2 gas sensor. Integr. Ferroelectr. (2018).

    Article  Google Scholar 

  23. 23.

    S.N. Narang, V.B. Kartha, N.D. Patel, Fourier transform infrared spectra and normal vibrations of CuO. Physica C 204, 8–14 (1992)

    CAS  Article  Google Scholar 

  24. 24.

    K. Kannaki, P.S. Ramesh, D. Geetha, Hydrothermal synthesis of CuO nanostructure and their characterizations. Int. J. Sci. Eng. Res. 3, 1–4 (2012)

    Google Scholar 

  25. 25.

    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Synergistic effect in structural and supercapacitor performance of well dispersed CoFe2O4/Co3O4 nano-hetrostructures. Ceram. Int. 44, 13806–13814 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.S. Pierotti, J. Rouquerol, T. Siemieniewska, international union of pure commission on colloid and surface chemistry including catalysis-Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Article  Google Scholar 

  27. 27.

    Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind. Eng. Chem. Res. 51, 11700–11709 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    R. Slama, J. Ghoul, I. El Ghiloufi, K. Omri, L. El Mir, Synthesis and physico-chemical studies of vanadiumdoped zinc oxide nanoparticles and its photocatalysis. J. Mater. Sci.: Mater. Electron. 27, 8146–8153 (2016)

    CAS  Google Scholar 

  29. 29.

    S.D. Balgude, Y.A. Sethi, B.B. Kale, N.R. Munirathnam, D.P. Amalnerkar, P.V. Adhyapak, Nanostructured layered Sn3O4 for hydrogen production and dye degradation under sunlight. RSC Adv. 6, 95663–95669 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    S. Sonia, S. Poongodi, P.S. Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Mater. Sci. Semicond. Process. 30, 585–591 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    A. Bhattacharjee, M. Ahmaruzzaman, CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Adv. 6, 41348–41363 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    J. Liu, J. Jin, Z. Deng, S.Z. Huang, Z.Y. Hu, L. Wang, C. Wang, L.H. Chen, Y. Li, G. Van Tendeloo, B.L. Su, Tailoring CuO nanostructures for enhanced photocatalytic property. J. Colloid Interface Sci. 384, 1–9 (2012)

    CAS  Article  Google Scholar 

  33. 33.

    R. Slama, J. EL Ghoul, K. Omri, A. Houas, L. El Mir, F. Launay, Effect of Ca-doping on microstructure and photocatalytic activity of ZnO nanoparticles synthesized by sol gel method. J. Mater. Sci.: Mater. Electron. 27, 7939–7946 (2016)

    CAS  Google Scholar 

  34. 34.

    X. Niu, T. Zhao, F. Yuan, Y. Zhu, Preparation of hollow CuO@SiO2 spheres and its catalytic performances for the NO + CO and CO oxidation. Sci. Rep. 5, 9153 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    A. Sharma, R.K. Dutta, A. Roychowdhury, D. Das, A. Goyal, A. Kapoor, Cobalt doped CuO nanoparticles as high efficient heterogeneous catalyst for reduction of 4-nitrophenol to 4-aminophenol. Appl. Catal. A 543, 257–265 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    R. Al-Gaashani, S. Radiman, N. Tabet, A. Razak Daud, Synthesis and optical properties of CuO nanostructures obtained via a novel thermal decomposition method. J. Alloys Compd. 509, 8761–8769 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    N.H. Hong, J. Sakai, F. Gervais, Magnetism due tooxygen vaccancies and/or defects in undoped semiconducting and insulating oxide thin films. J. Magn. Magn. Mater. 316, 214–217 (2007)

    CAS  Article  Google Scholar 

  38. 38.

    G.N. Rao, Y.D. Yao, J.W. Chen, Evolution of size,morphology, and magnetic properties of CuO nanoparticles by thermal annealing. J. Appl. Phys. 105, 093901–093906 (2009)

    Article  Google Scholar 

  39. 39.

    D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang, W. Sui, H. Shi, D. Xue, Vacany mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res. Lett. 5, 769–772 (2010)

    CAS  Article  Google Scholar 

  40. 40.

    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Tailoring the sttructural, optical, magnetic properties of NiFe2O4 by varying annealing temperature. J. Supercond. Novel Magn. 31, 2647–2654 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    I. Singh, K. Landfester, A. Chandra, R.M. Espi, A new approach for crystallization of copper (II) oxide hollow nanostructures with superior catalytic and magnetic response. Nanoscale 7, 19250–19258 (2015)

    CAS  Article  Google Scholar 

Download references


The authors, Narender Budhiraja and Sapna are thankful to DST-Haryana for their financial support as SRF under RETC project at Department of Physics, DCRUST, Murthal, India and very grateful to Prof. O.P. Pandey, Head, School of Physics and Materials Science, Thapar Institute of Engineering & Technology, Patiala for VSM characterization.

Author information



Corresponding author

Correspondence to S. K. Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Budhiraja, N., Sapna, Kumar, V. et al. Multifunctional CuO Nanosheets for High-Performance Supercapacitor Electrodes with Enhanced Photocatalytic Activity. J Inorg Organomet Polym 29, 1067–1075 (2019).

Download citation


  • Nanostructures
  • Electrochemical measurements
  • Magnetic properties
  • Energy storage