Structural and Antibacterial Properties of HyZnxNa2−xSi14O29 nH2O Layered Silicate Compounds, Prepared by Ion-Exchange Reaction

  • Adel MokhtarEmail author
  • Amal Djelad
  • Abdelkader Bengueddach
  • Mohamed Sassi


In this paper, zinc ion-exchange into the interlayer space of magadiite at different theoretical rates Zn2+/Si14O29 was investigated. Five Zn-exchanged materials, HyZnxNa2−xSi14O29 nH2O (x = 0.06, 0.21, 0.35, 0.57 and 0.82), were prepared and characterized using several techniques. As results, X-ray diffraction reveals that the basal spacing (d001) of the derivatives decreases with the increase of the zinc exchange rate, confirming the intercalation of zinc ions into the layer spaces of magadiite. This result is supported by thermogravimetric analysis, where an increase in decomposition temperatures is observed for Zn-exchanged materials. The introduction of Zn2+ ions into the interlayer space does not substantially affect the structure of the magadiite, but rather tends to stabilize it by increasing the decomposition temperature of the silanol groups. The UV-Visible DR analysis shows the presence of more than one intercalated zinc species in the all Zn-exchanged magadiite materials. The antibacterial activity for all exchanged materials was evaluated by the disc inhibition method against E. Coli and S. Aureus. The results show that the activity is strongly dependent on the zinc content of the Zn-exchanged material.

Graphical Abstract


Layered sodium silicate Na–magadiite Ion-exchange ZincII Antibacterial activity 


  1. 1.
    Y.-L. Ma, B. Yang, T. Guo, L. Xie, Antibacterial mechanism of Cu2+–ZnO/cetylpyridinium–montmorillonite in vitro. Appl. Clay Sci. 50, 348–353 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Top, S. Ülkü, Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 27, 13–19 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Ouyang, X. Yushan, T. Shaozao, S. Qingshan, C. Yiben, Structure and antibacterial activity of Ce3+ exchanged montmorillonites. J. Rare Earths 27, 858–863 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Tong, M. Yulong, G. Peng, X. Zirong, Antibacterial effects of the Cu (II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Vet. Microbiol. 105, 113–122 (2005)CrossRefGoogle Scholar
  5. 5.
    D. Wei, W. Sun, W. Qian, Y. Ye, X. Ma, The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohyd. Res. 344, 2375–2382 (2009)CrossRefGoogle Scholar
  6. 6.
    F. Wahid, H.-S. Wang, Y.-S. Lu, C. Zhong, L.-Q. Chu, Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int. J. Biol. Macromol. 101, 690–695 (2017)CrossRefGoogle Scholar
  7. 7.
    H.W. Smith, J. Jones, The effect of the addition of copper sulphate to the diet on the bacterial flora of the alimentary tract of the pig. J. Appl. Bacteriol. 26, 262–265 (1963)CrossRefGoogle Scholar
  8. 8.
    C. Hu, Z. Xu, M. Xia, Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet. Microbiol. 109, 83–88 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Malachová, P. Praus, Z. Rybková, O. Kozák, Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 53, 642–645 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Jiao, F. Lin, S. Cao, C. Wang, H. Wu, M. Shu, C. Hu, Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc-loaded montmorillonite. J. Anim. Sci. Biotechnol. 8, 27 (2017). CrossRefGoogle Scholar
  11. 11.
    H. Pourabolghasem, M. Ghorbanpour, R. Shayegh, Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method. J. Phys. Sci. 27, 1–12 (2016). CrossRefGoogle Scholar
  12. 12.
    G. Pál-Borbély, A. Auroux, Studies in Surface Science and Catalysis, vol. 94 (Elsevier, Amsterdam, 1995), pp. 55–62Google Scholar
  13. 13.
    H.P. Eugster, Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157, 1177–1180 (1967)CrossRefGoogle Scholar
  14. 14.
    S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials (CRC Press, Boca Raton, 2004)Google Scholar
  15. 15.
    F. Feng, K.J. Balkus, Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template. J. Porous Mater. 10, 5–15 (2003)CrossRefGoogle Scholar
  16. 16.
    H. Annehed, L. Fälth, F. Lincoln, Crystal structure of synthetic makatite Na2Si4O8(OH)2⋅4H2O. Zeitschrift für Kristallographie-Crystalline Materials 159, 203–210 (1982)CrossRefGoogle Scholar
  17. 17.
    R.A. Fletcher, D.M. Bibby, Synthesis of kenyaite and magadiite in the presence of various anions. Clays Clay Miner. 35, 318–320 (1987)CrossRefGoogle Scholar
  18. 18.
    M. Sassi, J. Miehé-Brendlé, J. Patarin, A. Bengueddach, Na-magadiite prepared in a water/alcohol medium: synthesis, characterization and use as a host material to prepare alkyltrimethylammonium-and Si-pillared derivates. Clay Miner. 40, 369–378 (2005)CrossRefGoogle Scholar
  19. 19.
    Y.-R. Wang, S.-F. Wang, L.-C. Chang, Hydrothermal synthesis of magadiite. Appl. Clay Sci. 33, 73–77 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Mokhtar, Z.A.K. Medjhouda, A. Djelad, A. Boudia, A. Bengueddach, M. Sassi, Structure and intercalation behavior of copper II on the layered sodium silicate magadiite material. Chem. Pap. 72, 1–12 (2018)CrossRefGoogle Scholar
  21. 21.
    C. Eypert-Blaison, L.J. Michot, B. Humbert, M. Pelletier, F. Villiéras, J.B.D. de la Caillerie, Hydration water and swelling behavior of magadiite. The H+, Na+, K+, Mg2+, and Ca2+ exchanged forms. J. Phys. Chem. B 106, 730–742 (2002)CrossRefGoogle Scholar
  22. 22.
    N. Homhuan, S. Bureekaew, M. Ogawa, Efficient concentration of indium (III) from aqueous solution using layered silicates. Langmuir 33, 9558–9564 (2017)CrossRefGoogle Scholar
  23. 23.
    C.S. Kim, D.M. Yates, P.J. Heaney, The layered sodium silicate magadiite: an analog to smectite for benzene sorption from water. Clays Clay Miner. 45, 881–885 (1997)CrossRefGoogle Scholar
  24. 24.
    U. Brenn, W. Schwieger, K. Wuttig, Rearrangement of cationic surfactants in magadiite. Colloid Polym. Sci. 277, 394–399 (1999)CrossRefGoogle Scholar
  25. 25.
    N. Mizukami, M. Tsujimura, K. Kuroda, M. Ogawa, Preparation and characterization of Eu-magadiite intercalation compounds. Clays Clay Miner. 50, 799–806 (2002)CrossRefGoogle Scholar
  26. 26.
    M. Ogawa, Y. Takahashi, Preparation and thermal decomposition of Co (II)-magadiite intercalation compounds. Clay Sci. 13, 133–138 (2007)Google Scholar
  27. 27.
    A. Mokhtar, A. Djelad, M. Adjdir, M. Zahraoui, A. Bengueddach, M. Sassi, Intercalation of hydrophilic antibiotic into the interlayer space of the layered silicate magadiite. J. Mol. Struct. 1171, 190–195 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Biopolymer-layered polysilicate micro/nanocomposite based on chitosan intercalated in magadiite. Res. Chem. Intermed. (2018). Google Scholar
  29. 29.
    M. Ogawa, M. Miyoshi, K. Kuroda, Perfluoroalkylsilylation of the interlayer silanol groups of a layered silicate, magadiite. Chem. Mater. 10, 3787–3789 (1998)CrossRefGoogle Scholar
  30. 30.
    K. Isoda, K. Kuroda, M. Ogawa, Interlamellar grafting of γ-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate. Chem. Mater. 12, 1702–1707 (2000)CrossRefGoogle Scholar
  31. 31.
    O.-Y. Kwon, H.-S. Shin, S.-W. Choi, Preparation of porous silica-pillared layered phase: simultaneous intercalation of amine-tetraethylorthosilicate into the H+-magadiite and intragallery amine-catalyzed hydrolysis of tetraethylorthosilicate. Chem. Mater. 12, 1273–1278 (2000)CrossRefGoogle Scholar
  32. 32.
    N. Miyamoto, R. Kawai, K. Kuroda, M. Ogawa, Intercalation of a cationic cyanine dye into the layer silicate magadiite. Appl. Clay Sci. 19, 39–46 (2001)CrossRefGoogle Scholar
  33. 33.
    Q. Wang, Y. Zhanæg, J. Zheng, T. Hu, C. Meng, Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species. Microporous Mesoporous Mater. 244, 264–277 (2016)CrossRefGoogle Scholar
  34. 34.
    A.R. Nunes, A.O. Moura, A.G. Prado, Calorimetric aspects of adsorption of pesticides 2,4-D, diuron and atrazine on a magadiite surface. J. Therm. Anal. Calorim. 106, 445–452 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Benkhatou, A. Djelad, M. Sassi, M. Bouchekara, A. Bengueddach, Lead (II) removal from aqueous solutions by organic thiourea derivatives intercalated magadiite. Desalin. Water Treat. 57, 9383–9395 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Peng, Q. Gao, Z. Du, J. Shi, Precursors of TAA-magadiite nanocomposites. Appl. Clay Sci. 31, 229–237 (2006)CrossRefGoogle Scholar
  37. 37.
    D.L. Guerra, A.A. Pinto, J.A. de Souza, C. Airoldi, R.R. Viana, Kinetic and thermodynamic uranyl (II) adsorption process into modified Na-Magadiite and Na-Kanemite. J. Hazard. Mater. 166, 1550–1555 (2009)CrossRefGoogle Scholar
  38. 38.
    Y. Ide, N. Ochi, M. Ogawa, Effective and selective adsorption of Zn2+ from seawater on a layered silicate. Angew. Chem. 123, 680–682 (2011)CrossRefGoogle Scholar
  39. 39.
    I. Fujita, K. Kuroda, M. Ogawa, Synthesis of interlamellar silylated derivatives of magadiite and the adsorption behavior for aliphatic alcohols. Chem. Mater. 15, 3134–3141 (2003)CrossRefGoogle Scholar
  40. 40.
    G.L. Paz, E.C. Munsignatti, H.O. Pastore, Novel catalyst with layered structure: metal substituted magadiite. J. Mol. Catal. A 422, 43–50 (2016)CrossRefGoogle Scholar
  41. 41.
    S.J. Kim, M.H. Kim, G. Seo, Y.S. Uh, Preparation of tantalum-pillared magadiite and its catalytic performance in Beckmann rearrangement. Res. Chem. Intermed. 38, 1181–1190 (2012)CrossRefGoogle Scholar
  42. 42.
    X. Sun, J. King, J.L. Anthony, Molecular sieve synthesis in the presence of tetraalkylammonium and dialkylimidazolium molten salts. Chem. Eng. J. 147, 2–5 (2009)CrossRefGoogle Scholar
  43. 43.
    S.J. Kim, G. Lee, Y.K. Ryu, B.-Y. Yu, Preparation and photoluminescent properties of Eu (III) containing M-layered silicates (M = Li, Na, K, Rb, Cs). Res. Chem. Intermed. 38, 1191–1202 (2012)CrossRefGoogle Scholar
  44. 44.
    Y. Chen, G. Yu, Synthesis and optical properties of composites based on ZnS nanoparticles embedded in layered magadiite. Clay Miner. 48, 739–748 (2013)CrossRefGoogle Scholar
  45. 45.
    Y. Chen, G. Yu, F. Li, J. Wei, Structure and photoluminescence of composite based on ZnO particles inserted in layered magadiite. Appl. Clay Sci. 88, 163–169 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Chen, G. Yu, F. Li, J. Wei, Structure and photoluminescence of composites based on CdS enclosed in magadiite. Clays Clay Miner. 61, 26–33 (2013)CrossRefGoogle Scholar
  47. 47.
    M. Cui, Y. Zhang, X. Liu, L. Wang, C. Meng, Changes of medium-range structure in the course of crystallization of zeolite omega from magadiite. Microporous Mesoporous Mater. 200, 86–91 (2014)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, T. Lv, Y. Ma, F. Tian, L. Shi, X. Liu, C. Meng, Synthesis and characterization of zeolite L prepared from hydrothermal conversion of magadiite. Microporous Mesoporous Mater. 228, 86–93 (2016)CrossRefGoogle Scholar
  49. 49.
    Z. Shi, Y. Wang, C. Meng, X. Liu, Hydrothermal conversion of magadiite into mordenite in the presence of cyclohexylamine. Microporous Mesoporous Mater. 176, 155–161 (2013)CrossRefGoogle Scholar
  50. 50.
    Y. Wang, T. Lv, H. Wang, Y. Zhao, C. Meng, H. Liu, ZSM-5 and ferrierite synthesized by magadiite conversion method in 1,6-hexamethylenediamine system. Microporous Mesoporous Mater. 208, 66–71 (2015)CrossRefGoogle Scholar
  51. 51.
    G. Brindley, Unit cell of magadiite in air, in vacuo, and under other conditions. Am. Miner. 54, 1583–1591 (1969)Google Scholar
  52. 52.
    W. Schwieger, G. Lagaly, S. Auerbach, K. Carrado, P. Dutta, Handbook of Layered Materials (Marcel Dekker, Inc., New York, 2004)Google Scholar
  53. 53.
    W. Schwieger, T. Selvam, O. Gravenhorst, N. Pfänder, R. Schlögl, G. Mabande, Intercalation of [Pt (NH3)4]2+ ions into layered sodium silicate magadiite: a useful method to enhance their stabilisation in a highly dispersed state. J. Phys. Chem. Solids 65, 413–420 (2004)CrossRefGoogle Scholar
  54. 54.
    Y. Huang, Z. Jiang, W. Schwieger, Vibrational spectroscopic studies of layered silicates. Chem. Mater. 11, 1210–1217 (1999)CrossRefGoogle Scholar
  55. 55.
    W. Schwieger, D. Heidemann, K.-H. Bergk, High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates. Revue de chimie minérale 22, 639–650 (1985)Google Scholar
  56. 56.
    G.G. Almond, R.K. Harris, P. Graham, A study of the layered alkali metal silicate, magadiite, by one- and two-dimensional 1H and 29Si NMR spectroscopy. J. Chem. Soc. Chem. Commun. 0, 851–852 (1994)CrossRefGoogle Scholar
  57. 57.
    Q. Wang, Y. Zhang, J. Zheng, Y. Wang, T. Hu, C. Meng, Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration. Dalton Trans. 46, 4303–4316 (2017)CrossRefGoogle Scholar
  58. 58.
    H. Chen, J. Shi, H. Chen, J. Yan, Y. Li, Z. Hua, Y. Yang, D. Yan, The preparation and photoluminescence properties of ZnO-MCM-41. Opt. Mater. 25, 79–84 (2004)CrossRefGoogle Scholar
  59. 59.
    K. Ozawa, Y. Nakao, Z. Cheng, D. Wang, M. Osada, R. Okada, K. Saeki, H. Itoh, F. Iso, Fabrication of novel composites of ZnO-nanoparticles and magadiite. Mater. Lett. 63, 366–369 (2009)CrossRefGoogle Scholar
  60. 60.
    P. Pimchan, N. Khaorapapong, M. Sohmiya, M. Ogawa, In situ complexation of 8-hydroxyquinoline and 4,4′-bipyridine with zinc (II) in the interlayer space of montmorillonite. Appl. Clay Sci. 95, 310–316 (2014)CrossRefGoogle Scholar
  61. 61.
    M. Segovia, K. Lemus, M. Moreno, M. Santa Ana, G. Gonzalez, B. Ballesteros, C. Sotomayor, E. Benavente, Zinc oxide/carboxylic acid lamellar structures. Mater. Res. Bull. 46, 2191–2195 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie des Matériaux (LCM), Faculté des Sciences Exactes et AppliquéesUniversité Oran1Oran El M’NaouerAlgeria

Personalised recommendations