Advertisement

A Facile Sol–Gel Process for Synthesis of ZnWO4 Nanopartices with Enhanced Band Gap and Study of Its Photocatalytic Activity for Degradation of Methylene Blue

  • Mahbobeh Rahmani
  • Tahereh Sedaghat
Article
  • 23 Downloads

Abstract

ZnWO4 nanoparticles were synthesized by a facile sol–gel method using Zn(CH3COO)2 and Na2WO4. The as-prepared ZnWO4 was characterized by several techniques: XRD, FTIR, TEM, FESEM, EDS, BET, PL and DRS. The effects of pH and calcined temperatures were investigated on the crystal structure of the ZnWO4 photocatalyst. Results showed that pure ZnWO4 was synthesized in pH 6 and calcined temperature 500 °C for 5 h. The synthesized ZnWO4 nanoparticles have a mean diameter less than 100 nm and the bond gap energy are about 3.20 eV. ZnWO4 nanoparticles showed efficient photocatalytic activity for the degradation of methylene blue under ultraviolet light irradiation. The apparent rate constant (k) of photodegradation reaction was obtained as 1.62 × 10−2 min−1.

Keywords

Zinc tungstate Photocatalytic activity Methylene blue Sol–gel 

Notes

Acknowledgements

Support of this work by Shahid Chamran University of Ahvaz, Iran (Grant No. 1396) is gratefully acknowledged.

References

  1. 1.
    E. Forgacs, T. Cserhati, G. Oros, Environ. Int. 30, 953 (2004)CrossRefGoogle Scholar
  2. 2.
    H.S. Rai, M.S. Bhattacharyya, J. Singh, T. Bansal, P. Vats, U. Banerjee, Crit. Rev. Environ. Sci. Technol. 35, 219 (2005)CrossRefGoogle Scholar
  3. 3.
    V. Gupta, J. Environ. Manage. 90, 2313 (2009)CrossRefGoogle Scholar
  4. 4.
    P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Chem. Eng. J. 171, 136 (2011)CrossRefGoogle Scholar
  5. 5.
    P.W. Koh, M.H.M. Hatta, S.T. Ong, L. Yuliati, S.L. Lee, J. Photochem. Photobiol. A 332, 215 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Maučec, A. Šuligoj, A. Ristić, G. Dražić, A. Pintar, N.N. Tušar, Catal. Today 310, 32 (2018)CrossRefGoogle Scholar
  7. 7.
    A.L. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  8. 8.
    E.D. Bøjesen, K.M. Jensen, C. Tyrsted, A. Mamakhel, H.L. Andersen, H. Reardon, J. Chevalier, A.-C. Dippel, B.B. Iversen, Chem. Sci. 7, 6394 (2016)CrossRefGoogle Scholar
  9. 9.
    C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, ACS Appl. Mater. Interfaces 6, 14423 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Huang, C. Zhang, Y. Zhu, J. Alloys Compd. 432, 269 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Phani, M. Passacantando, L. Lozzi, S. Santucci, J. Mater. Sci. 35, 4879 (2000)CrossRefGoogle Scholar
  12. 12.
    X. Jiang, J. Ma, J. Liu, Y. Ren, B. Lin, J. Tao, X. Zhu, Mater. Lett. 61, 4595 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Lin, J. Chen, X. Weng, L. Yang, X. Chen, Mater. Res. Bull. 44, 1102 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Huang, L. Gao, J. Am. Ceram. Soc. 89, 3877 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Li, R. Shi, C. Pan, Y. Zhu, H. Zhao, CrystEngComm. 13, 4695 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Fu, C. Pan, L. Zhang, Y. Zhu, Mater. Res. Bull. 42, 696 (2007)CrossRefGoogle Scholar
  17. 17.
    Z. Amouzegar, R. Naghizadeh, H. Rezaie, M. Ghahari, M. Aminzare, Ceram. Int. 41, 8352 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, X. Fu, J. Alloys Compd. 480, 684 (2009)CrossRefGoogle Scholar
  19. 19.
    W. Yan, S. ZHANG, L.-w. Zhang, Y.-f. Zhu, Chem. Res. Chin. Univ. 23, 465 (2007)CrossRefGoogle Scholar
  20. 20.
    G. Huang, Y. Zhu, CrystEngComm 14, 8076 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Liu, J. Tian, D. Zeng, C. Yu, L. Zhu, W. Huang, K. Yang, D. Li, Mater. Res. Bull. 94, 298 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Arin, P. Dumrongrojthanath, O. Yayapao, A. Phuruangrat, S. Thongtem, T. Thongtem, Superlattices Microstruct. 67, 197 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Kudo, H. Kato, Chem. Lett. 26, 421 (1997)CrossRefGoogle Scholar
  24. 24.
    S. Chatterjee, P. Mahapatra, A. Singh, R. Choudhary, J. Mater. Sci. Lett. 22, 99 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Chatterjee, P. Mahapatra, R. Choudhary, A.K. Thakur, Phys. Stat. Sol. (a) 201, 588 (2004)CrossRefGoogle Scholar
  26. 26.
    S. Ebraheem, A. El-Saied, Mater. Sci. Appl. 4, 324 (2013)Google Scholar
  27. 27.
    M. Hojamberdiev, G. Zhu, Y. Xu, Mater. Res. Bull. 45, 1934 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Dai, Z. Wang, Z. Zhang, Z. Ding, Surf. Interface Anal. 46, 1151 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Adhikari, D. Sarkar, G. Madras, RSC Adv. 5, 11895 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Huang, Y. Zhu, Adv. Mater. Sci. Eng. B 139, 201 (2007)CrossRefGoogle Scholar
  31. 31.
    V. Tsaryuk, V. Zolin, Spectrochim. Acta A 57, 355 (2001)CrossRefGoogle Scholar
  32. 32.
    T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol. A 140, 163 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of SciencesShahid Chamran University of AhvazAhvazIran

Personalised recommendations