Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics

Abstract

Several trace elements such as Mg2+, Na+, K+, F, Cl are contained in biological apatite of natural bones. The presence of these elements in bones is indispensable for their calcification and mineralization. Their simultaneous insertion in the apatite framework with preserved structure was our aim. Therefore, calcium hydroxyapatite (HAp) biomaterials doped with the aforementioned ions was the subject of the present study. Three formulations of ion-substituted HAp powders were prepared via a wet-chemical precipitation method. Analysis and characterization by several techniques proved that the obtained powders were of apatitic nature. Although stoichiometry was slightly weaker, multiple ion-substitutions lead to stable structures. When sintering, calcined powders at 500 °C for 1 h were uniaxially isostatically cold compacted into pellets. These pellets were pressurelessly sintered in a temperature range of 900–1250 °C. The maximum 95% densification value was obtained with the samples sintered at temperature 1150 °C for 1 h. A secondary phase of β-Ca3(PO4)2 appeared at 730 °C related to partial decomposition of the apatitic phase. The sintered materials were mechanically characterized by measurements of compressive and flexural strengths, fracture toughness, Young’s modulus and microhardness and the maximum values were obtained as 154 MPa, 60 MPa, 1.55 MPa·m1/2, 151 GPa and 600 Hv, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    J. Jansen, E. Ooms, N. Verdonschot, J. Wolke, Injectable calcium phosphate cement for bone repair and implant fixation. Orthop. Clin. North Am. 36, 89–95 (2005)

    Article  PubMed  Google Scholar 

  2. 2.

    J.H. Shepherd, S.M. Best, Calcium phosphate scaffolds for bone repair. Biomater. Regen. Med. Overv. 4, 83–92 (2011)

    Google Scholar 

  3. 3.

    J. Lu, H. Yu, Ch Chen, Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 8, 2015–2033 (2018)

    Article  CAS  Google Scholar 

  4. 4.

    A. Bigi, E. Boanini, Functionalized biomemetic calcium phosphate for bone tissue repair. J. Appl. Biomater. Funct. Mater. 15, 313–325 (2017)

    Google Scholar 

  5. 5.

    Ch. Sheng, H. He, Development and application of calcium phosphate cement bone, in Springer Series in Biomaterial Sciences and Engineering (Springer, Singapore, 2018)

    Google Scholar 

  6. 6.

    L.E. Cary, H.H.K. Xu, C.G. Simon Jr., S. Takagi, L.C. Chow, Premixed rapid-setting calcium phosphate composite for bone repair. Biomaterials 26, 5002–5014 (2005)

    Article  CAS  Google Scholar 

  7. 7.

    S.V. Dorozhkin, Calcium Orthophosphate-Based Bioceramics and Biocomposites (Wiley, Weinheim, 2016), p. 405

    Google Scholar 

  8. 8.

    M. Bongio, J.J.J.P. Van den Beucken, S.C.G. Leeuwenburgh, Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. J. Mater. Chem. 20, 8747–8759 (2010)

    Article  CAS  Google Scholar 

  9. 9.

    E. Landi, S. Sprio, M. Sandri, G. Celotti, A. Tampieri, Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater. 4, 656–663 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    S. Jabr Al-Sanabani, A.A. Madfa, F.A. Al-Sanabani, Application of calcium phosphate materials in dentistry. Int. J. Biomater. 2013, 876132 (2013)

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    D. Bellucci, A. Sola, V. Cannillo, Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: state of the art and current applications. J. Biomed. Mater. Res. A. 104, 1030–1056 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Y.M. Kong, H.E. Kim, H.W. Kim, Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. J. Biomed. Mater. Res. B 84, 334–339 (2008)

    Article  CAS  Google Scholar 

  13. 13.

    C. Ning, K. Dai, Research development of hydroxyapatite-based composites used as hard tissue replacement. J. Biomed. Eng. 20, 550–554 (2003)

    CAS  Google Scholar 

  14. 14.

    H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    S. Sulaiman, T. Keong, C.H. Cheng, A. Saim, R. Idrus, Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res. 137, 1093–1101 (2013)

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    M. Kamitakahara, C. Ohtsuki, T. Miyazaki, Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 23, 197–212 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    A. Jamelle, R. Hill, D. Gillam, In-vitro properties of calcium phosphate cement as a bone grafting material. Int. Dent. J. Stud. Res. 3, 43–48 (2015)

    Google Scholar 

  18. 18.

    A. Sadiasa, S.K. Sarkar, R.A. Franco, Y.K. Min, B.T. Lee, Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J. Biomater. Appl. 28, 739–756 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    L. Yu, Y. Li, K. Zhao, Y. Tang, Z. Cheng, J. Chen, Y. Zang, J. Wu, L. Kong, S. Liu, W. Lei, A novel injectable calcium phosphate cement bioactive glass composite for bone regeneration. Int. Dent. J. Stud. Res. 3, 43–48 (2015)

    Google Scholar 

  20. 20.

    Q. Liu, S. Huang, J.P. Matinlinna, Z. Chen, H. Pan, Insight into biological apatite: physiochemical properties and preparation approaches. BioMed. Res. Int. 2013, 1–13 (2013)

    Google Scholar 

  21. 21.

    R.Z. LeGeros, Biological and synthesized apatites, in Hydroxyapatite and Related Materials, ed. by P.W. Brown, B. Constantz (CRC Press, Boca Raton, 1994), pp. 3–28

    Google Scholar 

  22. 22.

    Y. Pan, M.E. Fleet, Compositions of the apatite-group minerals: substitution mechanisms and controlling factors, in Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Mineralogical Society of America, Washington, DC, 2002), pp. 13–50

    Google Scholar 

  23. 23.

    P.M. Piccoli, P.A. Candela, Apatite in igneous systems, in Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Mineralogical Society of America, Washington, DC, 2002), pp. 255–292

    Google Scholar 

  24. 24.

    M. Hata, K. Okada, S. Iwai, Cadmium hydroxyapatite. Acta Crystallogr. B 34, 3062–3064 (1978)

    Article  Google Scholar 

  25. 25.

    A.G. Evans, E.A. Charles, Fracture toughness determination by indentation. J. Am. Ceram. Soc. 59, 371–372 (1976)

    Article  CAS  Google Scholar 

  26. 26.

    B. Wopenka, J.D. Pasteri, A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 25, 131–143 (2005)

    Article  CAS  Google Scholar 

  27. 27.

    S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23, 1065–1072 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 23, 1073–1080 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    S. Nsar, A. Hassine, K. Bouzouita, Sintering and mechanical properties of magnesium and fluorine co-substituted hydroxyapatites. J. Biomater. Nanobiotechnol. 4, 1–11 (2013)

    Article  CAS  Google Scholar 

  30. 30.

    M. Hidouri, K. Boughzala, J.P. Lecompte, K. Bouzouita, Sintering and mechanical properties of magnesium-containing fluorapatite. C. R. Phys. 10, 242–248 (2009)

    Article  CAS  Google Scholar 

  31. 31.

    K.A. Gross, L.M. Rodríguez-Lorenzo, Sintered hydroxyfluorapatites. Part I: sintering ability of precipitated solid solution powders. Biomaterials 25(7–8), 1375–1384 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    N. Senamaud, D. Bernache-Assollant, E. Champion, M. Heughebaert, C. Rey, Calcination and sintering of hydroxyfluorapatite powders. Solid State Ionics 101–103, 1357–1362 (1997)

    Article  Google Scholar 

  33. 33.

    K.A. Gross, K.A. Bhadand, Sintered hydroxyfluorapatites. Part III: sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. Biomaterials 25(7–8), 1395 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976)

    Google Scholar 

  35. 35.

    R.I. Martin, P.W. Brown, Mechanical properties of hydroxyapatite formed at physiological temperature. J. Mater. Sci.: Mater. Med. 6, 138–143 (1995)

    CAS  Google Scholar 

  36. 36.

    M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina, Fabrication, properties and applications of dense hydroxyapatite: a review. J. Funct. Biomater. 6, 1099–1140 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    K. Ozeki, Y. Fukui, H. Aoki, Influence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered films. Appl. Surf. Sci. 253, 5040–5044 (2007)

    Article  CAS  Google Scholar 

Download references

Funding

The funding was provided by Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (TN).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mustapha Hidouri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hidouri, M., Dorozhkin, S.V. & Albeladi, N. Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics. J Inorg Organomet Polym 29, 87–100 (2019). https://doi.org/10.1007/s10904-018-0969-6

Download citation

Keywords

  • Ion-substituted hydroxyapatite
  • Bioceramics
  • Sintering
  • Mechanical properties