Skip to main content
Log in

Antireflection Films Based on Large-Area 2D Hollow SiO2 Spheres Monolayer Opals

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Hollow SiO2 spheres are synthesized by using various sizes of PS spheres as sacrified templates followed removal of the PS core by calcination. Large-area 2D monolayer SiO2 hollow spheres opals are fabricated through gas–liquid–solid interface self-assembly route base on core–shell PS@SiO2 as structural bricks which is a simple, fast and easily large-area-fabricated. In this route, proper ratio of alcohol to water plays important role on the synthesis of core–shell PS@SiO2 composite spheres while,the hydrophobic treatment of core–shell PS@SiO2 composite spheres is found primarily to realize opal films floating on water surface and further to be compacted into well ordered large monolayer films. Scanning electron microscopy and transmission electron microscopy demonstrate the obtained hollow SiO2 spheres opals are well dispersed and well-ordered into two dimensional arrays. ultraviolet–visible–near infrared (UV–vis–NIR) spectroscopy shows that transmission in visible light range increases with the added size of hollow SiO2 spheres. In contrast to solid SiO2 spheres opal, hollow SiO2 spheres opals demonstrates their improved transmission due to their high porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Jin, J. He, L. Yao, Y. Zhang, J. Li, ACS Appl. Mater. Interfaces 9(20), 17466–17475 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. W. Glaubitt, A. Gombert, U.S. Patent 6,177,131[P], 23 Jan 2001

  3. X. Du, J. He, J. Chem. 17(29), 8165–8174 (2011)

    Article  CAS  Google Scholar 

  4. W. Li, X. Sha, W. Dong, Z. Wang, Chem. Commun. (2002). https://doi.org/10.1039/B206020E

    Article  Google Scholar 

  5. Y. Hoshikawa, H. Yabe, A. Nomura, T. Yamaki, A. Shimojima, T. Okubo, Chem. Mater. 22(1), 12–14 (2009)

    Article  CAS  Google Scholar 

  6. Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, M. Tao, Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009)

    Article  CAS  Google Scholar 

  7. S.R. And, S. Ravaine, Chem. Mater. 15(2), 598–605 (2003)

    Article  CAS  Google Scholar 

  8. X. Wu, Y. Tian, Y. Cui, L. Wei, Q. Wang, Y. Chen, J. Phys. Chem. C 111(27), 9704–9708 (2007)

    Article  CAS  Google Scholar 

  9. L. Xu, He, J. Langmuir 28(19), 7512–7518 (2012)

    Article  CAS  Google Scholar 

  10. L. Xu, L. Gao, J. He, RSC Adv. 2(33), 12764 (2012)

    Article  CAS  Google Scholar 

  11. P.B. Clapham, M.C. Hutley, Nature. 244(5414), 281–282 (1973)

    Article  Google Scholar 

  12. L. Yu, H. Hu, H.B. Wu, X.W. Lou, Adv. Mater. 29(15)2017)

  13. J.B. Joo, M. Dahl, N. Li, F. Zaera, Y. Yin, Energy Environ. Sci. 6(7), 2082 (2013)

    Article  CAS  Google Scholar 

  14. S. Kado, S. Yokomine, K. Kimura, Bull. Chem. Soc. Japan 90(5), 537–545 (2017)

    Article  CAS  Google Scholar 

  15. Q. Ji, X. Qiao, X. Liu, H. Jia, J.-S. Yu, K. Ariga, Bull. Chem. Soc. Japan 91(3), 391–397 (2018)

    Article  CAS  Google Scholar 

  16. L.-L. Xing, K.-J. Huang, S.-X. Cao, H. Pang, Chem. Eng. J. 332, 253–259 (2018)

    Article  CAS  Google Scholar 

  17. X. Zhang, P. Lan, Y. Lu, J. Li, H. Xu, J. Zhang et al., ACS Appl. Mater. Interfaces 6(3), 1415–1423 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. X.-X. Zhang, S. Cai, D. You, L.-H. Yan, H.-B. Lv, X.-D. Yuan et al., Adv. Funct. Mater. 23(35), 4361–4365 (2013)

    Article  CAS  Google Scholar 

  19. N. Mizoshita, M. Ishii, N. Kato, H. Tanaka, Acs Appl. Mater. Interfaces 7(34):19424–19430 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. K.T. Cook, K.E. Tettey, R.M. Bunch, D. Lee, A.J. Nolte, Acs Appl. Mater. Interfaces 4(12), 6426 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. B. Jin, J. He, ACS Photon. 4(1), 188–196 (2016)

    Article  CAS  Google Scholar 

  22. Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang et al., Appl. Phys. Lett. 94(26), 263118 (2009)

    Article  CAS  Google Scholar 

  23. G. Tan, I. Cheng, J.H. Lee, L.H. Peng, M.K. Wei, S.T. Wu et al., Optica 4(7), 678 (2017)

    Article  Google Scholar 

  24. J.W. Leem, Y.M. Song, J.S. Yu, Nanoscale 5(21), 10455–10460 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. J. Peng, W. Lin, Y. Xing, K. Xu, G. Shuxi, R. Yuanyuan et al., Mater. Lett. 143, 1–4 (2015)

    Article  CAS  Google Scholar 

  26. D.G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Proc. Biol. Sci. 273(1587), 661–667 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. C. Wang, Y. Zhang, Y. Dong, L. Fu, Y. Bai, T. Li et al., Chem. Mater. 12(12), 3662–3666 (2000)

    Article  CAS  Google Scholar 

  28. N. Vogel, R.A. Belisle, B. Hatton, T.S. Wong, J. Aizenberg, Nat. Commun. 4, 2167 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. H. Hattori, Adv. Mater. 13(1), 51–54 (2001)

    Article  CAS  Google Scholar 

  30. L. Yao, J. He, Z. Geng, T. Ren, Nanoscale 7(30), 13125–13134 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Du, L.E. Luna, W.S. Tan, M.F. Rubner, R.E. Cohen, Acs Nano 4(7), 4308 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. S. Ji, J. Park, H. Lim, Nanoscale 4(15), 4603–4610 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. F. Galeotti, F. Trespidi, G. Timo, M. Pasini, ACS Appl. Mater. Interfaces 6(8), 5827–5834 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. J.G. Kim, H.J. Choi, K.C. Park, R.E. Cohen, G.H. Mckinley, G. Barbastathis, Small 10(12), 2487–2494 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. Y.H. Ghymn, K. Jung, M. Shin, H. Ko, Nanoscale 7(44), 18642–18650 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. Z. Guo, H. Zhao, W. Zhao, T. Wang, D. Kong, T. Chen et al., ACS Appl. Mater. Interfaces 8(18), 11796–11805 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. G. Jia, Z. Ji, H. Wang, R. Chen, Thin Solid Films 642, 174–181 (2017)

    Article  CAS  Google Scholar 

  38. L. Xu, Z. Geng, J. He, G. Zhou, ACS Appl. Mater. Interfaces 6(12), 9029–9035 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. X. Zou, C. Tao, L. Yan, F. Yang, H. Lv, H. Yan et al., Surf. Coat. Technol. 341, 57–63 (2018)

    Article  CAS  Google Scholar 

  40. A.S. Dimitrov, T. Miwa, K. Nagayama, Langmuir 15(16), 5257–5264 (1999)

    Article  CAS  Google Scholar 

  41. H. Li, J. Theriault, B. Rousselle, B. Subramanian, J. Robichaud, Y. Djaoued, Chem. Commun. (Camb) 50(17), 2184–2186 (2014)

    Article  CAS  Google Scholar 

  42. S.M. Scholz, R. Vacassy, J. Dutta, H. Hofmann, M. Akinc, J. Appl. Phys. 83(12), 7860–7866 (1998)

    Article  CAS  Google Scholar 

  43. J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A.A.R. Watt et al., ACS Appl. Mater. Interfaces 4(2), 854–859 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. J.S. Metzman, G. Wang, J.R. Morris, J.R. Heflin, J. Mater. Chem. C 6(4), 823–835 (2018)

    Article  CAS  Google Scholar 

  45. H. Hattori, Adv. Mater. 13(1), 51–54 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

The financial support of National Natural Science Foundation of China (Grant #21301123), China Scholarship council, Priority Academic Program Development of Jiangsu Higher Education Insititutions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenglei Shen or Hua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 826 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhou, J., Adelihan, K. et al. Antireflection Films Based on Large-Area 2D Hollow SiO2 Spheres Monolayer Opals. J Inorg Organomet Polym 29, 72–79 (2019). https://doi.org/10.1007/s10904-018-0966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0966-9

Keywords

Navigation