Skip to main content

Sintering-Induced Nucleation and Growth of Noble Metal Nanoparticles for Plasmonic Resonance Ceramic Color

Abstract

This study demonstrates the formation of nanoparticles (NPs) from metal salts within ceramic glazes, such that the use of this colorant technology is more accessible to artisans, employs less metal content, is less environmentally harmful, and allows for the use of traditional kilns. Gold NPs have been demonstrated to possess a specific, low material loading use as a ceramic glaze colorant via plasmon resonance. Pre-synthesized gold NPs that are added to ceramic glazes have been found to significantly change in size after firing in both reductive and oxidative atmospheres, but still maintain some size relationships and color properties. Unfortunately, it is not viable for the art community to fabricate and employ gold NP systems with high precision in a studio setting; however, the use of noble metal salts or metal oxides are realistic. To that end, this work investigates spontaneous gold and silver NP synthesis by the firing-induced development of NPs from metallic salts included within the glaze materials. Glaze samples with gold and silver salts are fired in reductive and oxidative environments, yielding a range of surface plasmon coloring effects for ceramic coloring. Additionally, the use of gold NP waste (precipitated Au NPs waste) was added to wet ceramic glazes to investigate firing effects on NPs precipitate and potential use as an alternative colorant. Sintering-induced NP nucleation and growth was observed after firing in both oxidation and reduction environments, although to differing degrees. The direct noble metal salt application process eliminates the need for preliminary gold NP synthesis, thus allowing for more practical and environmentally friendly methods in creating plasmonic resonance ceramic coloring, potentially reflective of the processes employed in ancient nanoparticle glasses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6

References

  1. D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel, C.A. Mirkin, Angew. Chem. Int. Ed. Engl. 49, 3280 (2010)

    CAS  Article  Google Scholar 

  2. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008)

    CAS  Article  Google Scholar 

  3. N. Lopez, J.K. Nørskov, J. Am. Chem. Soc. 124, 11262 (2002)

    CAS  Article  Google Scholar 

  4. T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda, Adv. Synth. Catal. 351, 1890 (2009)

    CAS  Article  Google Scholar 

  5. Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 46, 4774 (2017)

    CAS  Article  Google Scholar 

  6. V.C. Rodrigues, M.L. Moraes, J.C. Soares, A.C. Soares, R. Sanfelice, E. Deffune, O.N. Oliveira, Bull. Chem. Soc. Jpn. 91, 891 (2018)

    CAS  Article  Google Scholar 

  7. C.J. Murphy, Science 298, 2139 (2002)

    CAS  Article  Google Scholar 

  8. L. Catherine, P. Olivier, Gold Nanoparticles for Physics, Chemistry and Biology, 2nd edn. (World Scientific, London, 2017)

    Google Scholar 

  9. I. Chakraborty, T. Pradeep, Chem. Rev. 117, 8208 (2017)

    CAS  Article  Google Scholar 

  10. R.H. Lambertson, C.A. Lacy, S.D. Gillespie, M.C. Leopold, R.H. Coppage, J. Am. Ceram. Soc. 100, 3943 (2017)

    CAS  Article  Google Scholar 

  11. S. Satarug, M.R. Moore, Environ. Health Perspect. 112, 1099 (2004)

    CAS  Article  Google Scholar 

  12. T.A. Aderemi, A.A. Adenuga, J.A.O. Oyekunle, A.O. Ogunfowokan, Environ. Sci. Pollut. Res. 24, 17116 (2017)

    CAS  Article  Google Scholar 

  13. R.W. Sheets, Sci. Total Environ. 197, 167 (1997)

    CAS  Article  Google Scholar 

  14. M.I. Ahmad, S. Abdelfatah, S. Al-Meer, Int. J. Public Health Res. 5, 13 (2017)

    Google Scholar 

  15. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, J. Phys. Chem. B 110, 15700 (2006)

    CAS  Article  Google Scholar 

  16. N.R. Jana, L. Gearheart, C.J. Murphy, Langmuir 17, 6782 (2001)

    CAS  Article  Google Scholar 

  17. P. Colomban, A. Tournié, P. Ricciardi, J. Raman Spectrosc. 40, 1949 (2009)

    CAS  Article  Google Scholar 

  18. F. Drünert, M. Blanz, K. Pollok, Z. Pan, L. Wondraczek, D. Möncke, Opt. Mater. 76, 375 (2018)

    Article  Google Scholar 

  19. O. Schalm, V. Van der Linden, P. Frederickx, S. Luyten, G. Van der Snickt, J. Caen, D. Schryvers, K. Janssens, E. Cornelis, D. Van Dyck, M. Schreiner, Spectrochim. Acta Part B At. Spectrosc. 64, 812 (2009)

    Article  Google Scholar 

  20. A. Ruivo, C. Gomes, A. Lima, M.L. Botelho, R. Melo, A. Belchior, A.P. de Matos, J. Cult. Herit. 9, e134 (2008)

    Article  Google Scholar 

  21. P. Sciau, Deliv. Nanopart. (2012). https://doi.org/10.5772/34080

    Article  Google Scholar 

  22. F. Singer, W.L. German, Ceramic Glazes (Borax Consolidated Limited, London, 1960)

    Google Scholar 

  23. C. Corti, R. Holliday, Gold: Science and Applications (Taylor & Francis Group, Boca Raton, 2010), pp. 350–357

    Google Scholar 

  24. J. Carbert, Gold Bull. 13, 144 (1980)

    CAS  Article  Google Scholar 

  25. I. Freestone, N. Meeks, M. Sax, C. Higgitt, Gold Bull. 40, 270 (2007)

    CAS  Article  Google Scholar 

  26. S. Haslbeck, K.-P. Martinek, L. Stievano, F.E. Wagner, in ICAME 2005, ed. by P.-E. Lippens, J.-C. Jumas, J.-M.R. Génin (Springer, Berlin, 2007), pp. 89–94

    Chapter  Google Scholar 

  27. F. Springer, Industrial Ceramics (Chapman & Hall, Boca Raton, 1963), pp. 647–650

    Book  Google Scholar 

  28. A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45, 7896 (2006)

    Article  Google Scholar 

  29. S. Carrettin, M.C. Blanco, A. Corma, A.S.K. Hashmi, Adv. Synth. Catal. 348, 1283 (2006)

    CAS  Article  Google Scholar 

  30. M.C. Leopold, T.T. Doan, M.J. Mullaney, A.F. Loftus, C.M. Kidd, J. Appl. Electrochem. 45, 1069 (2015)

    CAS  Article  Google Scholar 

  31. M.B. Wayu, M.J. Pannell, M.C. Leopold, ChemElectroChem 3, 1245 (2016)

    CAS  Article  Google Scholar 

  32. T.A. El-Brolossy, T. Abdallah, M.B. Mohamed, S. Abdallah, K. Easawi, S. Negm, H. Talaat, Eur. Phys. J. Spec. Top. 153, 361 (2008)

    Article  Google Scholar 

  33. X. Huang, M.A. El-Sayed, J. Adv. Res. 1, 13 (2010)

    Article  Google Scholar 

  34. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79, 4215 (2007)

    CAS  Article  Google Scholar 

  35. J. Vieaud, J. Gao, J. Cane, M. Stchakovsky, A. En Naciri, K. Ariga, R. Oda, E. Pouget, Y. Battie, J. Phys. Chem. C 122, 11973 (2018)

    CAS  Article  Google Scholar 

  36. H. Shirai, M.T. Nguyen, D. Čempel, H. Tsukamoto, T. Tokunaga, Y.-C. Liao, T. Yonezawa, Bull. Chem. Soc. Jpn. 90, 279 (2016)

    Article  Google Scholar 

  37. K.K.R. Datta, B.V.S. Reddy, K. Ariga, A. Vinu, Angew. Chem. Int. Ed. 49, 5961 (2010)

    CAS  Article  Google Scholar 

  38. D.D. Evanoff, G. Chumanov, ChemPhysChem 6, 1221 (2005)

    CAS  Article  Google Scholar 

  39. A.L. González, C. Noguez, J. Beránek, A.S. Barnard, J. Phys. Chem. C 118, 9128 (2014)

    Article  Google Scholar 

  40. A. Gole, C.J. Murphy, Chem. Mater. 16, 3633 (2004)

    CAS  Article  Google Scholar 

  41. B. Karasu, S. Turan, J. Eur. Ceram. Soc. 22, 1447 (2002)

    CAS  Article  Google Scholar 

  42. N.V. Rudkovskaya, N.Y. Mikhailenko, Glass Ceram. 58, 387 (2001)

    CAS  Article  Google Scholar 

  43. A.R. Schmidt, N.D.T. Nguyen, M.C. Leopold, Langmuir 29, 4574 (2013)

    CAS  Article  Google Scholar 

  44. T.T. Doan, R.W. Day, M.C. Leopold, J. Mater. Sci. 47, 108 (2012)

    CAS  Article  Google Scholar 

  45. C.E. Dowdy, M.C. Leopold, Thin Solid Films 519, 790 (2010)

    CAS  Article  Google Scholar 

  46. J. Ueda, M. Samusawa, K. Kumagai, A. Ishida, S. Tanabe, J. Mater. Sci. 49, 3299 (2014)

    CAS  Article  Google Scholar 

  47. R. Yu, P. Mazumder, N.F. Borrelli, A. Carrilero, D.S. Ghosh, R.A. Maniyara, D. Baker, F.J. García de Abajo, V. Pruneri, ACS Photonics 3, 1194 (2016)

    CAS  Article  Google Scholar 

  48. B. Carter, G. Norton, Ceramic Materials Science and Engineering (Springer, New York, 2013), pp. 144–145

    Google Scholar 

  49. J. Hirschhorn, Introduction to Powder Metallurgy (American Powder Metallurgy Institute, New York, 1969)

    Google Scholar 

  50. W. Espe, M. Knoll, M.P. Wilder, Electronics 23, 80 (1950)

    Google Scholar 

  51. N.N. Dinh, L.T. DiPasquale, M.C. Leopold, R.H. Coppage, Gold Bull. 1, 1–9 (2018)

    Google Scholar 

  52. M.P., Whitmore, C. Baile, J. Am. Inst. Conserv. 36, 207 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Jeff Vick at the Visual Arts Center of Richmond, the VACR facility, and staff for use of their kilns. This research was generously supported by funding from Camille & Henry Dreyfus Foundation—Henry Dreyfus Teacher Scholar Award (MCL), the Floyd D. and Elisabeth S. Gottwald Endowed Chair of Chemistry (MCL), and the University of Richmond’s IIS Program (NNLD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Coppage.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinh, N., Leopold, M. & Coppage, R. Sintering-Induced Nucleation and Growth of Noble Metal Nanoparticles for Plasmonic Resonance Ceramic Color. J Inorg Organomet Polym 28, 2770–2778 (2018). https://doi.org/10.1007/s10904-018-0952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0952-2

Keywords

  • Ceramics
  • Glazes
  • Gold nanoparticles
  • Silver nanoparticles
  • Sintering
  • Metal salts