Skip to main content
Log in

Adverse Effects of Genotoxicity, Bioaccumulation and Ionoregulatory Modulation of Two Differently Synthesized Iron Oxide Nanoparticles on Zebrafish (Danio rerio)

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work zebrafish used as a bio-indicator to evaluate the influence of iron oxide nanoparticles on aquatic ecosystems has attracted special attention due to their unique properties. The purpose of this study was to develop a risk based probability model to predict the potential hazards of nanotoxicity toward aquatic organisms posed by iron oxide nanoparticles. Conversely, a notable number of studies have reported the role of iron oxide nanoparticles on aquatic organisms. Therefore, the aim of this present study is to assess the comparative impact of genotoxicity (MN assay), bioaccumulation and ionoregulatory modulation of iron oxide nanoparticles (green and chemical co-precipitated) on zebrafish. Synthesized iron oxide nanoparticles were characterized through UV–Vis, XRD, TEM with EDX, VSM and FT-IR spectrum. The median lethal concentration (LC50) of iron oxide nanoparticles for 96 h was 79.04 and 278.67 ppm respectively. After 96 h, MN assay showed the increasing of erythrocytes damage and bioaccumulation of iron oxide nanoparticles and Na+/K+-ATPase activity were significantly decreased with increasing concentration of iron oxide nanoparticles. In conclusion, green synthesized iron oxide nanoparticles have less toxic when compared to chemical co-precipitated iron oxide nanoparticles during a period of 96 h. This is the first report on green and chemical co-precipitated iron oxide nanoparticles toxicity using zebrafish as an animal model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway, J.R. Lead, Environ. Int. 37, 517 (2011)

    Article  CAS  Google Scholar 

  2. R.D. Handy, R. Owen, E. Valsami-Jones, Ecotoxicology 17, 315 (2008)

    Article  CAS  Google Scholar 

  3. S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead, Environ. Toxicol. Chem. 27, 1825 (2008)

    Article  CAS  Google Scholar 

  4. M. Saravanan, R. Suganya, M. Ramesh, R.K. Poopal, N. Gopalan, N. Ponpandian, J. Nanopart. Res. 274, 1 (2015)

    Google Scholar 

  5. L. Canesi, C. Ciacci, D. Vallotto, G. Gallo, A. Marcomini, G. Pojana, Aquat. Toxicol. 96, 151 (2010)

    Article  CAS  Google Scholar 

  6. T.M. Scown, R. Van Aerle, C.R. Tyler, Crit. Rev. Toxicol. 40, 653 (2010)

    Article  CAS  Google Scholar 

  7. M.N. Moore, Environ. Int. 32, 967 (2006)

    Article  CAS  Google Scholar 

  8. D. Suganya, M.R. Rajan, R. Ramesh, Int. J. Curr. Res. 8, 42081 (2016)

    CAS  Google Scholar 

  9. S.A. Aromal, D. Philip, Phys. Dimen. Syst. Nanosci. 44, 1692 (2012)

    Article  Google Scholar 

  10. P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Saudi Pharm. J. 24, 473 (2016)

    Article  Google Scholar 

  11. J.S. Kim, E. Kuk, K.N. Yu, K. Jong-Ho, S.J. Park, H.J. Lee, S.H. Kim, Nanomedicine 3, 95 (2007)

    Article  CAS  Google Scholar 

  12. A. Kumar Das, A. Marwal, R. Verma, Nano Hybrids 7, 69 (2014)

    Article  Google Scholar 

  13. R. Weissleder, G. Elizondo, J. Wittenberg, C.A. Rabito, H.H. Bengele, L. Josephson, Radiology 175, 489 (1990)

    Article  CAS  Google Scholar 

  14. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses (VCH Publishers, Weinheim, 1996), p. 1

    Google Scholar 

  15. American Society for Testing and Materials, Standard Practice for Conducting Acute Toxicity Tests With Fishes, Macroinvertebrates and Amphibians. ASTM Designation E 729–88 (ASTM, Philadelphia, PA, 1988), p. 20

    Google Scholar 

  16. OECD, Guidance Document for Aquatic Effects Assessment (1995)

  17. D.J. Finney, Statistical Method in Biological Assay, 3rd edn. (Charles Griffin, London, 1971)

    Google Scholar 

  18. K. Al-Sabti, C.D. Metcalfe, Mutat. Res. 343, 121 (1995)

    Article  CAS  Google Scholar 

  19. R.A.R. Villacis, S. Filho, B. Pina, B. Azevedo, A. Taylor, J.F. Mazzeu, C.K. Grisolia, Aquat. Toxicol. 191, 219 (2017)

    Article  CAS  Google Scholar 

  20. R.C. Playle, C.M. Wood, J. Fish. Biol. 38, 791 (1991)

    Article  CAS  Google Scholar 

  21. G. Topping, Aquaculture 1, 373 (1973)

    Article  Google Scholar 

  22. T. Shiosaka, H. Okuda, S. Fungi, Biochem. Biophys. Acta 246, 171 (1971)

    CAS  PubMed  Google Scholar 

  23. N. Basavegowda, K.B.S. Magar, K. Mishra, Y.R. Lee, New J. Chem. 38, 5415 (2014)

    Article  CAS  Google Scholar 

  24. N. Basavegowda, K. Mishra, Y.R. Lee, RSC Adv. 4, 61660 (2014)

    Article  CAS  Google Scholar 

  25. D. Philip, C. Unni, S.A. Aromal, V.K. Vidhu, Spectrochim. Acta A 78, 899 (2011)

    Article  Google Scholar 

  26. S. Venkateswarlu, M.Y. Yoon, J. Chem. Soc. Dalton Trans. 44, 18427 (2015)

    Article  CAS  Google Scholar 

  27. Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B.Bt. Ahmad Khairudin, S.E.Bt. Mohamad, K.X. Lee, Nanos. Res. Lett. 11, 276 (2016)

    Article  Google Scholar 

  28. B.G. Manoj, K.R. Anuj, D.N. Isabel, S.V. Rajender, S.B. Paula, Green Chem. 15, 1895 (2013)

    Article  Google Scholar 

  29. L. Zhuang, W. Zhang, Y. Zhao, H. Shen, H. Lin, J. Liang, Sci. Rep. 5, 9320 (2014)

    Article  Google Scholar 

  30. D. Bahadur, J. Giri, B. Nayak, T. Sriharsha, P. Pradhan, N.K. Prasad, K.C. Barick, R.D. Ambashta, Pramana J. Physics 65, 663 (2005)

    Article  CAS  Google Scholar 

  31. W. Pei, H. Kumada, T. Natusme, H. Saito, S. Ishio, J. Magn. Magn. Mater. 310, 2375 (2007)

    Article  CAS  Google Scholar 

  32. J. Lopez, L.E. Gonzalez, M.F. Quinonez, M.E. Gomez, N. Porras-Montenegro, G. Zambrano, J. Appl. Phys. 115, 193502 (2014)

    Article  Google Scholar 

  33. J. López, F.J. Espinoza-Beltran, G. Zambrano, M.E. Gomez, P. Prieto. Rev. Mex. Fís. 58, 293 (2012)

    Google Scholar 

  34. S. Arokiyaraj, M. Saravanan, N.K. Udaya Prakash, M. Valan Arasu, B. Vijaya Kumar, S. Vincent, Mater. Res. Bull. 48, 1001 (2013)

    Article  Google Scholar 

  35. Z. Markova, P. Novak, J. Kaslik, P. Plachtova, M. Brazdova, D. Jancula, K.M. Siskova, L. Machala, B. Marsalek, R. Zboril, ACS Sustain. Chem. Eng. 2, 1674 (2014)

    Article  CAS  Google Scholar 

  36. OECD guidelines for the testing of chemicals, test no. 474: mammalian erythrocyte micronucleus test (2014)

  37. N. Singh, B. Manshian, G.J. Jenkins, S.M. Griffiths, P.M. Williams, T.G. Maffeis, C.J. Wright, S.H. Doak, Biomaterials 30, 3891 (2009)

    Article  CAS  Google Scholar 

  38. N.M. Dissanayake, K.M. Current, S.O. Obare, Int. J. Mol. Sci. 16, 23482 (2015)

    Article  CAS  Google Scholar 

  39. G.M.T. Oliveira, L.W. Kist, T.C.B. Pereira, J.W. Borotolotto, F.L. Paquete, E.M.N. Oilveira, C.E. Leite, C.D. Bonan, N.R. Basso, R.M. Papaleo, M.R. Bogo, Comp. Biochem. Physiol. 162, 77 (2014)

    Google Scholar 

  40. H.C. Teien, O.A. Garmo, A. Atland, B. Salbu, Environ. Sci. Technol. 42, 1780 (2008)

    Article  CAS  Google Scholar 

  41. F. Kroglund, B.O. Rosseland, H.C. Teien, B. Salbu, T. Kristensen, B. Finstad, Hydrol. Earth Syst. Sci. 12, 491 (2008)

    Article  CAS  Google Scholar 

  42. B.O. Rosseland, M. Staurnes, Acidification of Freshwater Ecosystems: Implications for the Future (Wiley, Chichester, 1994), p. 227–246

    Google Scholar 

  43. I.J. Morgan, R.P. Henry, C.M. Wood, Aquat. Toxicol. 38, 145 (1997)

    Article  CAS  Google Scholar 

  44. C.J. Smith, B.J. Shaw, R.D. Handy, Aquat. Toxicol. 82, 94 (2007)

    Article  CAS  Google Scholar 

  45. J. Li, E.S.W. Quabius, S.G. Bonga, Flik, R.A.C. Lock, Aquat. Toxicol. 43, 1 (1998)

    Article  CAS  Google Scholar 

  46. S.M.G.J. Pelgrom, R.A.C. Lock, P.H.M. Balm, S.E.W. Bonga, Aquat. Toxicol. 32, 303 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul and Dr. C. M. Ramakiritinan, Department of Marine and Coastal Studies, Madurai Kamaraj University, Madurai, Tamil Nadu, India for the laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rajan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganya, D., Ramakritinan, C.M. & Rajan, M.R. Adverse Effects of Genotoxicity, Bioaccumulation and Ionoregulatory Modulation of Two Differently Synthesized Iron Oxide Nanoparticles on Zebrafish (Danio rerio). J Inorg Organomet Polym 28, 2603–2611 (2018). https://doi.org/10.1007/s10904-018-0935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0935-3

Keywords

Navigation