Skip to main content
Log in

Structural, Electrical and Magnetic Properties of Ba1−xAlxTi0.5Mn0.5O3 (x = 0.0–0.3) Perovskites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Ba1−xAlxTi0.5Mn0.5O3 (x = 0.0, 0.1, 0.2, 0.3) perovskites have been successfully synthesized using a standard solid state reaction technique. The structural and morphological characterizations have been carried out using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. XRD patterns confirm the tetragonal structure of the crystals and the unit cell volume is found to be decreased with the increase in Al content. FESEM images indicate that the grain sizes of the samples are found to be increased with the increase in Al content in the sample that influence on the electrical and magnetic properties of the perovskites. The electrical property is assessed with dielectric constant and AC conductivity measurements. The values of dielectric constants are found to be decreased with the increase in frequency form 1 to 100 kHz and then remain constant for all the samples and x = 0.1 composition shows maximum value. The dispersion of dielectric constants in low frequency is explained on the basis of Maxwell–Wanger model in agreement with Koop’s phenomenological theory. Permeability shows a linear increase with increasing Al substituent which is explained on the basis of variation of oxygen vacancy and grain size of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.M. Vijatović, J.D. Bobić, B.D. Stojanović, History and challenges of barium titanate: part II. Sci. Sinter. 40, 235–244 (2008)

    Article  Google Scholar 

  2. B. Ertuğ, The overview of the electrical properties of barium titanate. Am. J. Eng. Res. 2, 1–7 (2013)

    Google Scholar 

  3. B. Cherdhirunkorn, M.F. Smith, S. Limpijumnong, D.A. Hall, EXAFS study on the site preference of Mn in perovskite structure of PZT ceramics. Ceram. Int. 34, 727–729 (2008)

    Article  CAS  Google Scholar 

  4. M.V.S. Rao, K.V. Ramesh, M.N.V. Ramesh, B.S. Rao, Effect of copper doping on structural, dielectric and DC electrical resistivity properties of BaTiO3. Adv. Mater. Phys. Chem. 3, 77–82 (2013)

    Article  Google Scholar 

  5. M.J. Miah, M.N.I. Khan, A.K.M.A. Hossain, Synthesis and enhancement of multiferroic properties of (x)Ba0.95Sr0.05TiO3-(1-x)BiFe0.90Dy0.10O3 ceramics. J. Magn. Magn. Mater. 397, 39–50 (2016)

    Article  CAS  Google Scholar 

  6. I.G. Deac, I. Balasz, Electroresistance, magnetocapacitance and magnetotransport properties of La0.55Ca0.45MnO3/BaTiO3 composite. Mater. Chem. Phys. 136, 850–857 (2012)

    Article  CAS  Google Scholar 

  7. R. Inoue, S. Ishikawa, Y. Kitanaka, T. Oguchi, Y. Noguchi, M. Miyayama, Photocurrent characteristics for Mn-doped barium titanate ferroelectric single crystals. Trans. Mater. Res. Soc. Jpn 39, 259–264 (2014)

    Article  CAS  Google Scholar 

  8. X. Wang, M. Gu, B. Yang, S. Zhu, W. Cao, Hall effect and dielectric properties of Mn-doped barium titanate. Microelectron. Eng. 66, 855–859 (2003)

    Article  CAS  Google Scholar 

  9. R. Islam, S. Choudhury, S.N. Rahman, M.J. Rahman, Effect of manganese doping on the grain size and transition temperature of barium titanate ceramics. J. Ceram. Process. Res. 13, 248–251 (2012)

    Google Scholar 

  10. A.I. Ali, C.W. Ahn, Y.S. Kim, Enhancement of piezoelectric and ferroelectric properties of BaTiO3 ceramics by aluminum doping. Ceram. Int. 39, 6623–6629 (2013)

    Article  CAS  Google Scholar 

  11. C.-S. Chen, C.-C. Chou, Rietveld refinement on BaTiO3 materials doped with MgO/Y2O3 additives. Ferroelectrics 355, 159–164 (2007)

    Article  CAS  Google Scholar 

  12. Y.-C. Wu, S.-F. Wang, S.-H. Chen, Microstructural investigation of Ba(Ti(1–x)Mnx)O3 ceramics with 6H- and 12R-polytypes. J. Am. Ceram. Soc. 92, 2099–2108 (2009)

    Article  CAS  Google Scholar 

  13. K.R. Rahman, F.-U.-Z. Chowdhury, M.N.I. Khan, Structural, morphological, and magnetic properties of Al3+ substituted Ni0.25Cu0.20Zn0.55AlxFe2–xO4 ferrites synthesized by solid state reaction route. Results Phys. 7, 354–360 (2017)

    Article  Google Scholar 

  14. S.C. Mazumdar, M.N.I. Khan, M.F. Islam, A.K.M.A. Hossain, Enhanced multiferroic properties in (1–y)BiFeO3–yNi0.50Cu0.05Zn0.45Fe2O4 composites. J. Magn. Magn. Mater. 390, 61–69 (2015)

    Article  CAS  Google Scholar 

  15. A.K.M.A. Ullah, A.K.M.F. Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, R.A. Jahan, S.H. Firoz, Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment. J. Saudi Chem. Soc. 21, 830–836 (2017)

    Article  Google Scholar 

  16. H.M.B. Alam, R. Das, M. Shajahan, A.K.M.A. Ullah, A.K.M.F. Kibria, Int. J. Hydrogen Energy 43, 1998–2008 (2018)

    Article  CAS  Google Scholar 

  17. A.K.M.A. Ullah, A.K.M.F. Kibria, M. Akter, M.N.I. Khan, A.R.M. Tareq, S.H. Firoz, Oxidative degradation of methylene blue using Mn3O4 nanoparticles. Water Conserv. Sci. Eng. 1, 249–256 (2017)

    Article  Google Scholar 

  18. M.I. Mendelson, Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52, 443–446 (1969)

    Article  CAS  Google Scholar 

  19. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973)

    Google Scholar 

  20. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  21. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 (2006)

    Article  Google Scholar 

  22. S.C. Mazumdar, M.N.I. Khan, M.F. Islam, A.K.M.A. Hossain, Tuning of magnetoelectric coupling in (1−y)Bi0.8Dy0.2FeO3-yNi0.5Zn0.5Fe2O4 multiferroic composites. J. Magn. Magn. Mater. 401, 443–454 (2016)

    Article  CAS  Google Scholar 

  23. K.K. Patankar, P.D. Dombale, V.L. Mathe, S.A. Patil, R.N. Patil, AC conductivity and magnetoelectric effect in MnFe1.8Cr0.2O4–BaTiO3 composites. Mater. Sci. Eng. B 87, 53–58 (2001)

    Article  Google Scholar 

  24. J. Liu, D. Gan, C. Hu, M. Kiene, P.S. Ho, Porosity effect on the dielectric constant and thermomechanical properties of organosilicate films. Appl. Phys. Lett. 81, 4180 (2002)

    Article  CAS  Google Scholar 

  25. D. Sitko, W. Bąk, B. Garbarz-Glos, A. Budziak, C. Kajtoch, A. Kalvane, Dielectric properties of BaTiO3 based materials with addition of transition metal ions with variable valence, in IOP Conference Series: Materials Science and Engineering, vol. 49 (2013), p. 012050

    Article  Google Scholar 

  26. A. Mansingh, A. Dhar, The AC conductivity and dielectric constant of lithium niobate single crystals. J. Phys. D 18, 2059–2071 (1985)

    Article  CAS  Google Scholar 

  27. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)

    Article  CAS  Google Scholar 

  28. M.S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesized by combustion method. J. Alloys Compd. 509, 1861–1865 (2011)

    Article  CAS  Google Scholar 

  29. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  30. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1982)

    Google Scholar 

  31. M.J. Miah, M.N.I. Khan, A.K.M.A. Hossain, Weak ferromagnetism and magnetoelectric effect in multiferroic xBa0.95Sr0.05TiO3-(1-x)BiFe0.9Gd0.1O3 relaxors. J. Magn. Magn. Mater. 401, 600–611 (2016)

    Article  CAS  Google Scholar 

  32. M.M. Haque, M. Huq, M.A. Hakim, Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites. J. Magn. Magn. Mater. 320, 2792–2799 (2008)

    Article  Google Scholar 

  33. F.T.Z. Toma, I.N. Eshaa, M.N.I. Md. Al-Amin, Khan, K.H. Maria, Study of the structural, electrical and magnetic properties of calcium (Ca) and strontium (Sr) substituted barium titanate (BaTiO3) ceramics. J. Ceram. Process. Res. 18, 701–710 (2017)

    Google Scholar 

  34. J. Li, Y. Duan, H. He, D. Song, Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J. Alloy. Compd. 315, 259–264 (2001)

    Article  CAS  Google Scholar 

  35. W. Cai, J. Gao, C. Fu, L. Tang, Dielectric properties, microstructure and diffuse transition of Ni-doped Ba (Zr0.2Ti0.8)O3 ceramics. J. Alloys Compd. 487, 668–674 (2009)

    Article  CAS  Google Scholar 

  36. A. Globus, P. Duplex, M. Guyot, Determination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE Trans. Magn. 7, 617–622 (1971)

    Article  CAS  Google Scholar 

  37. S. Karimunnesa, A.K.M. Atique Ullah, M.R. Hasan, F.S. Shanta, R. Islam, M.N.I. Khan, Effect of holmium substitution on the structural, magnetic and transport properties of CoFe2–xHoxO4 ferrites. J. Magn. Magn. Mater. 457, 57–63 (2018)

    Article  CAS  Google Scholar 

  38. L. Rednic, I.G. Deac, E. Dorolti, M. Coldea, V. Rednic, M. Neumann, Magnetic cluster development in In1–xMnxSb semiconductor alloys. Cent. Eur. J. Phys. 8, 620–627 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. M. Atique Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanta, F.S., Atique Ullah, A.K.M., Kabir, M.F. et al. Structural, Electrical and Magnetic Properties of Ba1−xAlxTi0.5Mn0.5O3 (x = 0.0–0.3) Perovskites. J Inorg Organomet Polym 28, 2447–2454 (2018). https://doi.org/10.1007/s10904-018-0904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0904-x

Keywords

Navigation