Polymeric Copper Oxide: Preparation and Investigation of Its Structure and Optical Properties

  • I. Yu. Prosanov
  • E. Benassi
  • N. V. Bulina
  • A. A. Matvienko
  • K. B. Gerasimov
  • A. A. Sidelnikov


A complex of polyvinyl alcohol (PVA) with copper hydroxide was used as a precursor to obtain polymeric copper oxide through thermal decomposition. The absence of Cu(OH)2 crystalline phase was observed for the component ratio up to 1 Cu(OH)2 molecular unit to 3 PVA residuals. The formation of crystalline copper oxide was not observed after the dehydration of this material. UV–VIS and IR spectroscopy, and computational modeling were used to study the structure and properties of the obtained materials. A comparison with other similar materials was drawn. It was found that experimental data are in general accordance with the computations based on the polymeric model for copper hydroxide/oxide as a component of hybrid interpolymeric complex with PVA. A distinctive feature observed for polymeric copper oxide is strong broadening of the optical absorption band at 400 nm. It is suggested that this effect is caused by strong electron–phonon interaction, which is also responsible for superconductivity of copper oxide based systems.


Hybrid interpolymeric complexes Hybrid materials Inorganic polymers Low-dimensional structures CuO 



The Siberian Supercomputer Center of the Siberian Branch of the Russian Academy of Sciences (SB RAS) is gratefully acknowledged for providing supercomputer facilities.

Supplementary material

10904_2018_897_MOESM1_ESM.doc (5 mb)
Supplementary material 1 (DOC 5116 KB)


  1. 1.
    Shuji Saito und Haruhiko Okuyama. Die Adsorption von Kupfer auf Polyvinylalkohol. Kolloid Z. 139(3), 150–155 (1954)CrossRefGoogle Scholar
  2. 2.
    H. Yokoi, S. Kawata, M. Iwaizumi, Interaction modes between heavy metal ions and water-soluble polymers. 1. Spectroscopic and magnetic reexamination of the aqueous solutions of cupric ions and poly(vinyl alcohol). J. Am. Chem. Soc. 108, 3358–3361 (1986)CrossRefGoogle Scholar
  3. 3.
    I.Y. Prosanov, N.V. Bulina, A.C. Yu, Hybrid material polyvinyl alcohol-copper oxide and its electrical properties. Phys. Solid State 54(8), 1699–1703 (2012)CrossRefGoogle Scholar
  4. 4.
    R.W. Antony, Solid State Chemistry and Its Applications (Wiley, London, 1984)Google Scholar
  5. 5.
    Y. Cudennec, A. Lecerf, The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci. 5, 1471–1474 (2003)CrossRefGoogle Scholar
  6. 6.
    Yu Li, X.-Y. Yang, J. Rooke, G. Van Tendeloo, B.-L. Su, Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. J. Colloid Interface Sci. 348, 303–312 (2010)CrossRefGoogle Scholar
  7. 7.
    S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Nanoflower-like CuO/Cu(OH)2 hybrid thin films: synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 732, 80–85 (2014)CrossRefGoogle Scholar
  8. 8.
    S.C. Lee, S.-H. Park, S.M. Lee, J.B. Lee, H.J. Kim, Synthesis and H2 uptake of Cu2(OH)3Cl, Cu(OH)2 and CuO nanocrystal aggregate. Catal. Today 120, 358–362 (2007)CrossRefGoogle Scholar
  9. 9.
    A.R. Hajipour, F. Mohammadsaleh, M.R. Sabzalian, Copper-containing polyvinyl alcohol composite systems: preparation, characterization and biological activity. J. Phys. Chem. Solids 83, 96–103 (2015)CrossRefGoogle Scholar
  10. 10.
    D.M. Ginsberg (ed), Physical Properties of High Temperature Superconductors (World Scientific, Singapore, 1989)Google Scholar
  11. 11.
    M. Sierka, Synergy between theory and experiment in structure resolution of low-dimensional oxides. Prog. Surf. Sci. 85, 398–434 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Takahama, S.M. Saharin, K. Tashiro, Details of the intermolecular interactions in poly(vinyl alcohol)-iodine complexes as studied by quantum chemical calculations. Polymer 99, 566–579 (2016)CrossRefGoogle Scholar
  13. 13.
    I.Y. Prosanov, N.V. Bulina, K.B. Gerasimov, Complexes of polyvinyl alcohol with insoluble inorganic compounds. Phys. Solid State 55, 2132–2135 (2013)CrossRefGoogle Scholar
  14. 14.
    I.Y. Prosanov, E. Benassi, N.V. Bulina, A.A. Matvienko, Structure and properties of self-assembling low-dimensional hybrid materials: the case of cadmium halides in polyvinyl alcohol. Curr. Inorg. Chem. 7(3), 155–161 (2017)CrossRefGoogle Scholar
  15. 15.
    I.Y. Prosanov, E. Benassi, N.V. Bulina, Structure of hybrid interpolymeric complexes of zinc halides with polyvinyl alcohol. Curr. Appl. Polym. Sci. 2(1), 44–48 (2018)CrossRefGoogle Scholar
  16. 16.
    I.Y. Prosanov, E. Benassi, Structure of hybrid interpolymeric complexes of polyvinyl alcohol and halides of second group elements. Adv. Mater. Sci. Eng. 2017, 4931082 (2017)CrossRefGoogle Scholar
  17. 17.
    I.Y. Prosanov, S.T. Abdulrahman, S. Thomas, N.V. Bulina, K.B. Gerasimov, Complex of polyvinyl alcohol with boric acid: structure and use. Mater. Today Commun. 14, 77–81 (2018)CrossRefGoogle Scholar
  18. 18.
    A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  19. 19.
    R. Ditchfield, W.J. Hehre, J.A. Pople, Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54(1), 724–728 (1971)CrossRefGoogle Scholar
  20. 20.
    W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56(6), 2257–2261 (1972)CrossRefGoogle Scholar
  21. 21.
    P.C. Hariharan, J.A. Pople, Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chem. Acc. 28, 213–222 (1973)CrossRefGoogle Scholar
  22. 22.
    P.C. Hariharan, J.A. Pople, Accuracy of AH equilibrium geometries by single determinant molecular-orbital theory. Mol. Phys. 27, 209–214 (1974)CrossRefGoogle Scholar
  23. 23.
    M.S. Gordon, The isomers of silacyclopropane. Chem. Phys. Lett. 76, 163–168 (1980)CrossRefGoogle Scholar
  24. 24.
    M.M. Francl, W.J. Pietro, W.J. Hehre, et .al. Self-consistent molecular orbital methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 77, 3654–3665 (1982)CrossRefGoogle Scholar
  25. 25.
    R.C. Binning, L.A. Curtiss, Compact contracted basis-sets for 3rd-row atoms—GA-KR. J. Comp. Chem. 11, 1206–1216 (1990)CrossRefGoogle Scholar
  26. 26.
    J.-P. Blaudeau, M.P. McGrath, L.A. Curtiss, L. Radom, Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 107, 5016–5021 (1997)CrossRefGoogle Scholar
  27. 27.
    V.A. Rassolov, J.A. Pople, M.A. Ratner, T.L. Windus, 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)CrossRefGoogle Scholar
  28. 28.
    V.A. Rassolov, M.A. Ratner, J.A. Pople, P.C. Redfern, L.A. Curtiss, 6-31G* basis set for third-row atoms. J. Comp. Chem. 22, 976–984 (2001)CrossRefGoogle Scholar
  29. 29.
    G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J. Mantzaris, A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 89, 2193–2218 (1988)CrossRefGoogle Scholar
  30. 30.
    G.A. Petersson, M.A. Al-Laham, A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991)CrossRefGoogle Scholar
  31. 31.
    S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)CrossRefGoogle Scholar
  32. 32.
    T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)CrossRefGoogle Scholar
  33. 33.
    C.M. Breneman, K.B. Wiberg, Determining atom-centered monopoles from molecular electrostatic potentials—the need for high sampling density in formamide conformational-analysis. J. Comp. Chem. 11, 361–373 (1990)CrossRefGoogle Scholar
  34. 34.
    H.J. Bohórquez, C.F. Matta, R.J. Boyd, The localized electrons detector as an ab initio representation of molecular structures. Int. J. Quant. Chem. 110, 2418–2425 (2010)Google Scholar
  35. 35.
    E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010)CrossRefGoogle Scholar
  36. 36.
    J. Andres, S. Berski, J. Contreras-Garcia, P. Gonzalez-Navarrete, Following the molecular mechanism for the NH3 + LiH -> LiNH2 + H-2 chemical reaction: a study based on the joint use of the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) index. J. Phys. Chem. 118, 1663–1672 (2014)CrossRefGoogle Scholar
  37. 37.
    P. Cacciani, P. Čermák, J. Cosléou, J. El Romh, J. Hovorka, M. Khelkhal, Spectroscopy of ammonia in the range 6626–6805 cm−1: using temperature dependence towards a complete list of lower state energy transitions. Mol. Phys. 18, 2476–2485 (2014)CrossRefGoogle Scholar
  38. 38.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, 2013)Google Scholar
  39. 39.
    I.Yu.. Prosanov, N.V. Bulina, Polymeric sulfides CdS, CuS, and NiS in polyvinyl alcohol matrix. Phys. Solid State 56, 1270–1272 (2014)CrossRefGoogle Scholar
  40. 40.
    H.R. Oswald, A. Reller, H.W. Schmalle, E. Dubler, Structure of copper(II) hydroxide, Cu(OH)2. Acta Cryst. C46, 2279–2284 (1990)Google Scholar
  41. 41.
    N. Mott, E. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, Oxford, 1971)Google Scholar
  42. 42.
    M. Abdelaziz, M.M. Ghannam, Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys. B 405, 958–964 (2010)CrossRefGoogle Scholar
  43. 43.
    H. Abdullah, N.A.N. Azmy, N.M. Naim, A.A. Hamid, S. Idris, Synthesis and fabrication of ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite films by using γ-radiolysis and it’s microbial sensor application. J Sol Gel Sci. Technol. 74(1), 15–23 (2015)CrossRefGoogle Scholar
  44. 44.
    D. Curie, Luminescence in Crystals (Wiley, London, 1963)Google Scholar
  45. 45.
    R.F.W. Bader, H. Essen, The characterization of atomic interactions. J. Chem. Phys. 80(5), 1943–1960 (1984)CrossRefGoogle Scholar
  46. 46.
    R.F.w. Bader, Atoms in Molecules. A Quantum Theory (Oxford University Press, Oxford, 1994)Google Scholar
  47. 47.
    R.F.W. Bader, A quantum-theory of molecular-structure and its applications. Chem. Rev. 91, 893–892 (1991)CrossRefGoogle Scholar
  48. 48.
    R.A. Boto, J. Contreras-Garcia, J. Tierny, J.-P. Piquemal, Interpretation of the reduced density gradient. Mol. Phys. 114, 1406–1414 (2016)CrossRefGoogle Scholar
  49. 49.
    Y. Zhang, H. He, K. Dong, S. Zhang, A DFT study on lignin dissolution in imidazolium-based ionic liquids. RSC Adv. 7, 12670–12682 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry and MechanochemistryNovosibirskRussia
  2. 2.School of Science and TechnologyNazarbayev UniversityAstanaKazakhstan
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations