Skip to main content
Log in

Adsorption of Ethylbenzene from Air on Metal–Organic Frameworks MIL-101(Cr) and MIL-53(Fe) at Room Temperature

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Volatile organic compounds are a major cause of air pollution; therefore, VOCs are a serious fulmination for the environment. According to studies, adsorption processes have a high performance for the removal of pollutants that by selecting the proper absorbent, efficiency will be improved. In this work performance of two metal organic frameworks are studied so porous materials named MIL-101(Cr) and MIL-53(Fe) as an adsorbent for the removal of ethylbenzene have been synthesized hydrothermally. The materials were characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, adsorption of ethylbenzene, field emission scanning electron microscopy (FESEM), and accelerated surface area and porosimetry system (ASAP). Adsorption isotherms of ethylbenzene on the MIL-101(Cr), and MIL-53(Fe) were measured experimentally in case of 0–500 ppm concentration of ethylbenzene in air and pressure 1 atm. The breakthrough curves were modeled by different models, namely bed depth service time (BDST), Thomas and Yoon–Nelson. Afterwards, adsorption isotherms were modeled by Langmuir and Freundlich equations. The effect of the nature of surface area and pore size of the adsorption properties was determined. Smaller surface area and higher pore size of MIL-53(Fe) than MIL-101(Cr) makes smaller quantity of ethylbenzene adsorption. Finally, the absorption of this absorbent was compared with conventional activated carbon which was used widely in industry. The results presented that MIL-101(Cr) was a potential superior adsorbent for sorptive removal of ethylbenzene from contaminated air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.-K. Jo, H.-H. Chun, Application of fibrous activated carbon filter in continuous-flow unit for removal of volatile organic compounds under simulated indoor conditions. Aerosol. Air Qual. Res. 14(1), 347–354 (2014)

    Article  CAS  Google Scholar 

  2. M. Jahangiri et al., The adsorption of benzene, toluene and xylenes (BTX) on the carbon nanostructures: the study of different parameters. Fresenius Environ. Bull. 20(4a), 1036–1045 (2011)

    CAS  Google Scholar 

  3. Z. Zhao et al., Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation. Ind. Eng. Chem. Res. 50(4), 2254–2261 (2011)

    Article  CAS  Google Scholar 

  4. F.I. Khan, A.K. Ghoshal, Removal of volatile organic compounds from polluted air. J. Loss Prev. Process Ind. 13(6), 527–545 (2000)

    Article  Google Scholar 

  5. H. Nourmoradi, M. Nikaeen, M. Khiadani, Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: equilibrium, kinetic and thermodynamic study. Chem. Eng. J. 191, 341–348 (2012)

    Article  CAS  Google Scholar 

  6. U. Daiminger, W. Lind, Adsorption Processes for Natural Gas Treatment (Engelhard Corp, USA, 2004), p. 14

    Google Scholar 

  7. H. Yamauchi et al., Performance of VOC abatement by thermal swing honeycomb rotor adsorbers. Ind. Eng. Chem. Res. 46(12), 4316–4322 (2007)

    Article  CAS  Google Scholar 

  8. B. Wang et al., Applications of metal–organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal. Green Energy Environ. (2018). https://doi.org/10.1016/j.gee.2018.03.001

    Article  Google Scholar 

  9. D. Wang et al., Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 519, 273–284 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. Z.-Y. Gu et al., Adsorption and separation of xylene isomers and ethylbenzene on two Zn–terephthalate metal–organic frameworks. J. Phys. Chem. C 114(1), 311–316 (2009)

    Article  CAS  Google Scholar 

  11. D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 105(33), 11623–11627 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Arnold et al., Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate. Eur. J. Inorg. Chem. 2007(1), 60–64 (2007)

    Article  CAS  Google Scholar 

  13. D. Farrusseng, S. Aguado, C. Pinel, Metal–organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48(41), 7502–7513 (2009)

    Article  CAS  Google Scholar 

  14. F. Wu et al., Copper nanoparticles embedded in metal–organic framework MIL-101 (Cr) as a high performance catalyst for reduction of aromatic nitro compounds. Inorg. Chem. Commun. 32, 5–8 (2013)

    Article  CAS  Google Scholar 

  15. M. Meilikhov et al., Metals@MOFs—loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 2010(24), 3701–3714 (2010)

    Article  CAS  Google Scholar 

  16. J. Gordon, H. Kazemian, S. Rohani, MIL-53(Fe), MIL-101, and SBA-15 porous materials: potential platforms for drug delivery. Mater. Sci. Eng. C 47, 172–179 (2015)

    Article  CAS  Google Scholar 

  17. L. Xie et al., Preparation and characterization of metal-organic framework MIL-101 (Cr)-coated solid-phase microextraction fiber. Anal. Chim. Acta 853, 303–310 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. D.Y. Hong et al., Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater. 19(10), 1537–1552 (2009)

    Article  CAS  Google Scholar 

  19. F.D. Lahoz-Martín, A. Martín-Calvo, S. Calero, Selective separation of BTEX mixtures using metal–organic frameworks. J. Phys. Chem. C 118(24), 13126–13136 (2014)

    Article  CAS  Google Scholar 

  20. K. Prasanth et al., Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal–organic framework. Int. J. Hydrog. Energy 36(13), 7594–7601 (2011)

    Article  CAS  Google Scholar 

  21. G. Férey et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743), 2040–2042 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. K. Yang et al., Adsorption of volatile organic compounds by metal–organic frameworks MIL-101: influence of molecular size and shape. J. Hazard. Mater. 195, 124–131 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. S.H. Jhung et al., Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19(1), 121–124 (2007)

    Article  CAS  Google Scholar 

  24. M. Anbia, V. Hoseini, Enhancement of CO2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification. J. Nat. Gas Chem. 21(3), 339–343 (2012)

    Article  CAS  Google Scholar 

  25. Y. Horiuchi et al., Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks. Chem. Commun. 52(29), 5190–5193 (2016)

    Article  CAS  Google Scholar 

  26. Preparing method and application of core-shell structure Fe3O4@MIL(Fe) composite material. CN105214613A. 2015, University of Jinan

  27. J.-J. Du et al., New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater. 190(1), 945–951 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Saedi et al., MIL-101 metal–organic framework: a highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. Catal. Commun. 17, 18–22 (2012)

    Article  CAS  Google Scholar 

  29. F. Zadehahmadi et al., Manganese(III) tetrapyridylporphyrin-chloromethylated MIL-101 hybrid material: a highly active catalyst for oxidation of hydrocarbons. Appl. Catal. A 477, 34–41 (2014)

    Article  CAS  Google Scholar 

  30. H. Rajati, A.H. Navarchian, S. Tangestaninejad, Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation. Chem. Eng. Sci. 185, 92–104 (2018)

    Article  CAS  Google Scholar 

  31. D. Jiang et al., Facile synthesis of metal-organic framework films via in situ seeding of nanoparticles. Chem. Commun. 48(41), 4965–4967 (2012)

    Article  CAS  Google Scholar 

  32. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. S. Liu et al., Synthesis and characterization of an iron nitride constructed by a novel template of metal organic framework. J. Spectrosc. 2015, 8 (2015)

    Google Scholar 

  34. W. Cho, S. Park, M. Oh, Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods. Chem. Commun. 47(14), 4138–4140 (2011)

    Article  CAS  Google Scholar 

  35. W. Dong et al., Metal-organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Adv. 5(23), 17451–17457 (2015)

    Article  CAS  Google Scholar 

  36. M.-T.H. Nguyen, Q.-T. Nguyen, Efficient refinement of a metal–organic framework MIL-53 (Fe) by UV–vis irradiation in aqueous hydrogen peroxide solution. J. Photochem. Photobiol. A 288, 55–59 (2014)

    Article  CAS  Google Scholar 

  37. Q. Liu et al., Adsorption of carbon dioxide by MIL-101 (Cr): regeneration conditions and influence of flue gas contaminants. Sci. Rep. 3, 2916 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  38. F. Zadehahmadi et al., Synthesis and characterization of mangenese (III) porphyrin supported on imidazole modified chloromethylated MIL-101 (Cr): a heterogeneous and reusable catalyst for oxidation of hydrocarbons with sodium periodate. J. Solid State Chem. 218, 56–63 (2014)

    Article  CAS  Google Scholar 

  39. M. Saikia, D. Bhuyan, L. Saikia, Facile synthesis of Fe3O4 nanoparticles on metal organic framework MIL-101 (Cr): characterization and catalytic activity. New J. Chem. 39(1), 64–67 (2015)

    Article  CAS  Google Scholar 

  40. N. Li et al., A novel dispersive solid-phase extraction method using metal-organic framework MIL-101 as the adsorbent for the analysis of benzophenones in toner. Talanta 132, 713–718 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. M. Saikia, L. Saikia, Sulfonic acid-functionalized MIL-101 (Cr) as a highly efficient heterogeneous catalyst for one-pot synthesis of 2-amino-4 H-chromenes in aqueous medium. RSC Adv. 6(19), 15846–15853 (2016)

    Article  CAS  Google Scholar 

  42. Y. Zhang et al., Synthesis, characterization and photocatalytic properties of MIL-53 (Fe)–graphene hybrid materials. RSC Adv. 4(15), 7594–7600 (2014)

    Article  CAS  Google Scholar 

  43. Y.-Y. Liu et al., Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect. Int. J. Hydrog. Energy 32(16), 4005–4010 (2007)

    Article  CAS  Google Scholar 

  44. K.-S. Lin et al., Structural characterization of chromium atoms in MIL-101 metal organic frameworks using XANES/EXAFS spectroscopy. Chin. J. Phys. 50(2), 322–331 (2012)

    CAS  Google Scholar 

  45. J. Ren et al., Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake. Int. J. Hydrog. Energy 39(23), 12018–12023 (2014)

    Article  CAS  Google Scholar 

  46. J. Nwabanne, P. Igbokwe, Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre. Int. J. Appl. Sci. Technol. 2(5), (2012)

  47. R. Han et al., Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. J. Hazard. Mater. 145(1), 331–335 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. G. Kanadasan, M.D. Mashitah, V.M. Vadivelu, Fixed Bed Adsorption of Methylene Blue by Using Palm Oil Mill Effluent Waste Activated Sludge. 3rd IWA Asia Pacific Young Water Professional Conference 2010 Achieving Sustainable Development In the new Era, Singapore, 21–24 November 2010.

  49. K.S. Bharathi, S.P.T. Ramesh, Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus. Appl. Water Sci. 3(4), 673–687 (2013)

    Article  CAS  Google Scholar 

  50. A. Negrea et al., Experimental and modelling studies on As (III) removal from aqueous medium on fixed bed column. Chem. Bull. “Politehnica” Univ. (Timisoara), 56(70), 2 (2011)

    Google Scholar 

  51. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  CAS  Google Scholar 

  52. X. Chen, Modeling of experimental adsorption isotherm data. Information 6(1), 14–22 (2015)

    Article  Google Scholar 

  53. M.D. LeVan, T. Vermeulen, Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys. Chem. 85(22), 3247–3250 (1981)

    Article  CAS  Google Scholar 

  54. A.A.M. Daifullah, B.S. Girgis, Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf. A 214(1), 181–193 (2003)

    Article  CAS  Google Scholar 

  55. S. Hwa Jhung et al., Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2006)

    Article  CAS  Google Scholar 

  56. S. Bhattacharjee, C. Chen, W.-S. Ahn, Chromium terephthalate metal-organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 4(94), 52500–52525 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the R&T/NIOC under contract number 71/92019. Our thanks and appreciation also go to the people who are directly or indirectly helped us out in developing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Alaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangodaz, E., Alaie, E., Safekordi, A.A. et al. Adsorption of Ethylbenzene from Air on Metal–Organic Frameworks MIL-101(Cr) and MIL-53(Fe) at Room Temperature. J Inorg Organomet Polym 28, 2090–2099 (2018). https://doi.org/10.1007/s10904-018-0896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0896-6

Keywords

Navigation