Advertisement

A Facile Approach to Generate Cross-Linked Poly(cyclotriphosphazene-co-oxyresveratrol) Nanoparticle with Intrinsically Fluorescence

  • Shiquan Hong
  • Jing Li
  • Xiaobin Huang
  • Hong Liu
Article
  • 86 Downloads

Abstract

Highly cross-linked and monodisperse polyphosphazene nanoparticles exhibiting strong fluorescence with oxyresvertrol structure was facilely generated via a one-pot prediction polycondensation of hexachlorocyclotriphosphazene and oxyresveratrol. The results reveal that the diameter of the microspheres can be well adjusted (typically in a range from 200 to 400 nm). Attractively, the as-prepared nanoparticle with oxyresveratrol structure possess outstanding disperse ability in both aqueous and organic media. Moreover, it exhibits significantly enhanced fluorescent intensity and outstanding photobleaching stability under ultraviolet–visible irradiation, owing to the highly cross-linked and organic–inorganic hybrid structure. Due to these superior properties and novelty of our synthesized material, it has shown great potential in application as fluorescent labels, carriers and potent biomaterials in drug delivery.

Keyword

Facile Oxyresveratrol Nanoparticle Fluorescent Cross-linked Drug delivery 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 21274092, 91441205), and Shanghai Science & Technology Committee (No. 10ZR1416100) and Shanghai Munucipal Planning Commission and Research Fund (No. 2010258).

References

  1. 1.
    F. Liao, S.W. Yang, Synth. Met. 205, 32–41, (2015)CrossRefGoogle Scholar
  2. 2.
    R. Zairov, A. Mustafina, N. Shamsutdinova et al., Sci. Rep. 7, 40486 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Mohanty, L.D. Kull, K. Landskron, Nat. Commun. 2, 401 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Zhong, Q. Chen, J.J. Li, X.H. Pan, Z.W. Han, W. Dong, Nano 12, 1750135 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Terai, T. Nagano, Curr. Opin. Chem. Biol. 12, 515–521 (2008)CrossRefGoogle Scholar
  6. 6.
    I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435–446 (2005)CrossRefGoogle Scholar
  7. 7.
    W.L. Wu, D.J. Liu, J.F. Zhu et al., J. Taiwan Inst. Chem. Eng. 82, 117–128 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Vijayasree, K. Haritha, V. Subhash, K.R.S.S. Rao, Res. J. Biotechnol. 4, 61–66 (2009)Google Scholar
  9. 9.
    X.H. Shi, J. Lim, T. Ha, Anal. Chem. 82, 6132–6138 (2010)CrossRefGoogle Scholar
  10. 10.
    V.P. Torchilin, Cell. Mol. Life Sci. 61, 2549–2559 (2004)CrossRefGoogle Scholar
  11. 11.
    X.Q. Zhao, R.P. Bagwe, W.H. Tan, Adv. Mater. 16, 173–176 (2004)CrossRefGoogle Scholar
  12. 12.
    C.L. Fu, I. Radja, E. Morallon, A. Benyoucef, Polym. Compos. 38, 254–260 (2017)CrossRefGoogle Scholar
  13. 13.
    C.J. Cho, S.S. Lee, J.H. Jung, Analyst 135, 1551–1555 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Wan, X.B. Huang, Mater. Today Commun. 11, 38–60 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Rao, A. Dragulescu-Andrasi, H. Yao, Curr. Opin. Biotechnol. 18, 17–25 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, Colloid Polym Sci 294, 1877–1885 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Sharma, S. Brown, G. Walter, S. Santra, B. Moudgil, Adv. Coll. Interf. Sci. 471, 123–126 (2006)Google Scholar
  18. 18.
    J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Nat. Biotechnol. 21, 47–51 (2003)CrossRefGoogle Scholar
  19. 19.
    Z. Tian, A.D. Shaller, A.D.Q. Li, Chem. Commun. 10, 180–182 (2009)CrossRefGoogle Scholar
  20. 20.
    H.R. Allcock, Angew. Chem. 89, 153–162 (1977) (Angew. Chem. Int. Ed. Engl. 16, 147 (1977))CrossRefGoogle Scholar
  21. 21.
    I. Manners, Angew. Chem. 108, 1712–1731 (1996) (Angew. Chem. Int. Ed. Engl. 35, 1602 (1996))CrossRefGoogle Scholar
  22. 22.
    M.J.S. Dewar, E.A.C. Lucken, M.A. Whitehead, J. Chem. Soc. 2423–2429 (1960)Google Scholar
  23. 23.
    P. Potin, R. Dejaeger, Eur. Polym. J. 27, 341–348 (1991)CrossRefGoogle Scholar
  24. 24.
    D.Q. Wang, Y. Hu, L.J. Meng, X.C. Wang, Q.H. Lu, RSC. Adv. 5, 92762–92768 (2015)CrossRefGoogle Scholar
  25. 25.
    S.U. Dar, S. Ali, M.U. Hameed, Z. Zuhra, Z.P. Wu, New J. Chem. 40, 8418–8423 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Verkade, Angew. Chem. 121, 9385 (2009)CrossRefGoogle Scholar
  27. 27.
    H.R. Allcock, E.H. Klingenberg, Macromolecules 28, 4351–4360 (1995)CrossRefGoogle Scholar
  28. 28.
    L. Zhu, Y. Zhu, Y. Pan, Y. Huang, X.B. Huang, X.Z. Tang, Macromol. React. Eng. 1, 45–52 (2007)CrossRefGoogle Scholar
  29. 29.
    W. Wei, X.B. Huang, K.Y. Chen, X.Z. Tang, RSC. Adv. 37, 65–71 (2012)Google Scholar
  30. 30.
    Y.M. Kim, J. Yun, C.K. Lee et al., J. Biol. Chem. 277, 16340–16344 (2002)CrossRefGoogle Scholar
  31. 31.
    K.O. Chung, B.Y. Kim, M.H. Lee, Y.R. Kim, H.Y. Chung, J.H. Park, J.O. Moon, J. Pharm. Pharmacol. 12, 1695–1700 (2003)CrossRefGoogle Scholar
  32. 32.
    S. Benyakhou, A. Belmokhtar b, A. Zehhaf a, A. Benyoucef, J. Mol. Struct. 1150, 580–585 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shiquan Hong
    • 1
  • Jing Li
    • 2
  • Xiaobin Huang
    • 1
  • Hong Liu
    • 1
  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of StomotologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina

Personalised recommendations