Skip to main content
Log in

Degradation Treatment of 4-Nitrophenol by Moringa oleifera Synthesised GO-CeO2 Nanoparticles as Catalyst

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A facile microwave-assisted reaction was used to synthesize graphene oxide with cerium oxide nanoparticles (GO-CeO2 NPs) from water extracts of Moringa oleifera flower. The one step microwave synthesis treatment was used for reduction of ceria atom to cerium oxide nanoparticles along with the reduction of graphene oxide. The synthesized GO-CeO2 NPs were analysed by various analytical instrumentation techniques and we found the size of nanoparticles as 50 nm with a spherical shape. Further, the green synthesized GO-CeO2 NPs were employed as a catalyst to reduce 4-nitrophenol and achieved a degradation rate of 95.45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Ai, H. Yue, J. Jiang, Environmentally friendly light-driven synthesis of Ag nanoparticles in situ grown on magnetically separable biohydrogels as highly active and recyclable catalysts for 4-nitrophenol reduction. J. Mater. Chem. 22, 23447–23453 (2012)

    Article  CAS  Google Scholar 

  2. K. Anand, C. Tiloke, A. Phulukdaree, B. Ranjan, A. Chuturgoon, S. Singh, R.M. Gengan, Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. J. Photochem. Photobiol. B 165, 87–95 (2016)

    Article  CAS  Google Scholar 

  3. J.C.J. Bart, N. Giordano (1975) The formation of the superstructure of Ce2(MoO4)3. J. Less Common Met. 40:257–262.

    Article  CAS  Google Scholar 

  4. S. Bai, X. Shen, G. Zhu., M. Li, H. Xi, K. Chen, In situ growth of NixCo100x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl. Mater. Interfaces 4, 2378–2386 (2012)

    Article  CAS  Google Scholar 

  5. V. Balakumar, P. Prakash, Ag nanoshell catalyzed dedying of industrial effluents. RSC Adv. 6, 31653–31660 (2016)

    Article  Google Scholar 

  6. V. Balakumar, P. Prakash, Green synthesized nanospherical silver for selective and sensitive sensing of Cd2+ colorimetrically. RSC Adv. 6, 35778–35784 (2016)

    Article  Google Scholar 

  7. V. Balakumar, P. Prakash, Silver-nanospheres as a green catalyst for the decontamination of hazardous pollutants. RSC Adv. 5, 105917–105924 (2015)

    Article  Google Scholar 

  8. V. Balakumar, P. Prakash, A facile, one-pot and eco-friendly synthesis of gold/silver nanobimetallics smartened rGO for enhanced catalytic reduction of hexavalent chromium. RSC Adv. 6, 57380–57388 (2015)

    Google Scholar 

  9. V. Balakumar, P. Prakash, Silver nanoparticle-embedded RGO-nanosponge for superior catalytic activity towards 4-nitrophenol reduction. RSC Adv. 6, 88837–88845 (2015)

    Google Scholar 

  10. V. Balakumar, P. Sathish Kumar, P. Prakash, An in-situ synthesis of novel Au@NG-PPy nanocomposite for enhanced electrocatalytic activity toward selective and sensitive sensing of catechol in natural samples. Sens. Actuators B: Chem. 253, 392–399 (2017)

    Article  Google Scholar 

  11. V. Balakumar, P. Prakash, Synergistic combination of a novel metal-free mesoporous band-gap-modified carbon nitride grafted polyaniline nanocomposite for decontamination of refractory pollutant. Ind. Eng. Chem. Res. 57(19), 6684–6695 (2018)

    Article  Google Scholar 

  12. M.A. Butkus, L. Edling, M.P. Labare, The efficacy of silver as a bactericidal agent: advantages, limitations and considerations for future use. J. Water Supply Res. Technol. 52, 407–416 (2003)

    Article  CAS  Google Scholar 

  13. G. Elango, S.M. Kumaran, S.S. Kumar, S. Muthuraja, S.M. Roopan, Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim. Acta A 145, 176–180 (2015)

    Article  CAS  Google Scholar 

  14. G. Elango, S.M. Roopan, Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim. Acta A 139, 367–373 (2015)

    Article  CAS  Google Scholar 

  15. G. Elango, S.M. Roopan, Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem. Photobiol. B 155, 34–38 (2016)

    Article  CAS  Google Scholar 

  16. T. Frelink, W. Visscher, J. Van Veen, Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J. Electroanal. Chem. 382, 65–72 (1995)

    Article  Google Scholar 

  17. K. Hemalatha, G. Madhumitha, Eco-friendly synthesis of palladium nanoparticles, environmental toxicity assessment and its catalytic application in Suzuki Miyaura Coupling. Res. J. Pharm. Technol. 8, 1691–1700 (2015)

    Article  Google Scholar 

  18. R. Kumar, S.M. Roopan, A. Prabhakarn, V.G. Khanna, S. Chakroborty, Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim. Acta A 90, 173–176 (2012)

    Article  CAS  Google Scholar 

  19. J.F. Liang, Z. Cai, Y. Tian, L.D. Li, J.X. Geng, L. Guo, Deposition SnO2/nitrogen-doped graphene nanocomposites on the separator: a new type of flexible electrode for energy storage devices. ACS Appl. Mater. Interfaces 5, 12148–12155 (2013)

    Article  CAS  Google Scholar 

  20. J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4- nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012)

    Article  CAS  Google Scholar 

  21. T.V. Mathew, S. Kuriakose, Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin. Colloids Surf. B 101, 14–18 (2013)

    Article  CAS  Google Scholar 

  22. L. Ma, X. Shen, G. Zhu, Z. Ji, H. Zhou, CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. Carbon 77, 255–265 (2015)

    Article  Google Scholar 

  23. L.M. Pastrana-Martinez, S. Morales-Torres, A.G. Kontos, N.G. Moustakas, J.L. Faria, J.M. Dona-Rodriguez, P. Falaras, A.M.T. Silva, TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light. Chem. Eng. J. 224, 17–23 (2013)

    Article  CAS  Google Scholar 

  24. P.D. Peeva, A.E. Palupi, M. Ulbricht, Ultrafiltration of humic acid solutions through unmodified and surface functionalized low-fouling polyethersulfone membranes—effects of feed properties, molecular weight cut-off and membrane chemistry on fouling behavior and cleanability. Sep. Purif. Technol. 81, 124–133 (2011)

    Article  CAS  Google Scholar 

  25. K.N. Prasad, B. Yang, M. Zhao, N. Ruenroengklin, Y. Jiang, Application of ultrasonication or high pressure extraction of flavonoids from litchi fruit pericarp. J. Food Process Eng. 32, 828–843 (2009)

    Article  Google Scholar 

  26. S.M. Roopan, G. Madhumitha, A.A. Rahuman, C. Kamaraj, A. Bharathi, T.V. Surendra, Low-cost and eco-friendly bio-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crop Prod. 43, 631–635 (2013)

    Article  CAS  Google Scholar 

  27. S.M. Roopan, T.V. Surendra, G. Elango, Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl. Microbiol. Biochem. 98, 5289–5300 (2014)

    CAS  Google Scholar 

  28. S.J. Skinner, Y. Kang, X-ray diffraction studies and phase transformations of CeNbO4+ δ using in situ techniques. Solid State Sci. 5, 1475–1479 (2003)

    Article  CAS  Google Scholar 

  29. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182 (2004)

    Article  CAS  Google Scholar 

  30. T.V. Surendra, S.M. Roopan, Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J. Photochem. Photobiol. B 161, 122–128 (2016)

    Article  CAS  Google Scholar 

  31. M. Tang, W. Xing, J. Wu, G. Huang, K. Xiang, L. Guo, G. Li, Graphene as a prominent antioxidant for diolefin elastomers. J. Mater. Chem. A 3, 5942–5948 (2015)

    Article  CAS  Google Scholar 

  32. S.C. Tang, S. Vongehr, M.K. Meng, Environmentally friendly light-driven synthesis of Ag nanoparticles in situ grown on magnetically separable biohydrogels as highly active and recyclable catalysts for 4-nitrophenol reduction. J. Phys. Chem. C 114, 977–982 (2010)

    Article  CAS  Google Scholar 

  33. X. Wang, D. Liu, S. Song, H. Zhang, Heterobimetallic metalorganic framework as a precursor to prepare a nickel/nanoporous carbon composite catalyst for 4-nitrophenol reduction. J. Am. Chem. Soc. 135, 15864–15872 (2013)

    Article  CAS  Google Scholar 

  34. K.L. Wu, X.W. Wei, X.-M. Zhou, D.-H. Wu, X.-W. Liu, Y. Ye, Q. Wang, NiCo2 alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol. J. Phys. Chem. C 115, 16268–16274 (2011)

    Article  CAS  Google Scholar 

  35. C.K. Yang, Y. Yamazaki, A. Aydin, S.M. Haile, Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J. Mater. Chem. A 2, 18562–18573 (2014)

    Article  CAS  Google Scholar 

  36. Y. Yang, Y. Zhang, C.J. Sun, X. Li, W. Zhang, X. Ma, Y. Ren, X. Zhang, Heterobimetallic metal-organic framework as a precursor to prepare a nickel/nanoporous carbon composite catalyst for 4-nitrophenol reduction. ChemCatChem 6, 3084–3090 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishnan Anand, Selvaraj Mohana Roopan or Anil A. Chuturgoon.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, K., Murugan, V., Mohana Roopan, S. et al. Degradation Treatment of 4-Nitrophenol by Moringa oleifera Synthesised GO-CeO2 Nanoparticles as Catalyst. J Inorg Organomet Polym 28, 2241–2248 (2018). https://doi.org/10.1007/s10904-018-0891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0891-y

Keywords

Navigation