A Design of Mercury(II) Coordination Polymers with Pyridinedicarboxylic Acids: Structural, Spectroscopic and Thermal Studies

  • Željka Soldin
  • Boris-Marko Kukovec
  • Dubravka Matković-Čalogović
  • Zora Popović


Two novel mercury(II) coordination polymers, two-dimensional [HgCl(2,3-pydcH)(H2O)]n (1) and one-dimensional [HgCl(2,5-pydcH)(DMF)]n (2) (2,3-pydcH2 = pyridine-2,3-dicarboxylic acid; 2,5-pydcH2 = pyridine-2,5-dicarboxylic acid), were prepared in the reactions of the corresponding pyridinedicarboxylic acid with mercury(II) chloride. Their structures were solved by the single-crystal X-ray diffraction method. Both 2,3-pydcH and 2,5-pydcH are partially deprotonated bridging ligands which display similar coordination modes, acting as N,O-bidentate and O’-monodentate ligands in the structures of 1 and 2, respectively. The presence of DMF in the reaction mixture led to the formation of a 1D coordination polymer, while a 2D coordination polymer was formed in the absence of DMF. Spectroscopic analysis of 1 and 2 was performed by IR spectroscopy in the solid state and by 1H and 13C NMR spectroscopy in the DMSO solutions. Thermal properties of the coordination polymers 1 and 2 were also investigated. NMR data support complete decomposition of 1 and a preserved polymeric structure of 2 in the DMSO solution.

Graphical Abstract


Coordination polymer 2D network Coordination mode Mercury(II) Pyridinedicarboxylic acids 



This work was supported by University of Zagreb, Zagreb, Croatia (Grant No. 118120281106) and by the Ministry of Science, Education and Sports of the Republic of Croatia (Grant No. 119-1193079-1332).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    N.F. Sunday, Arc. Org. Inorg. Chem. Sci. 1, 1 (2018)Google Scholar
  2. 2.
    M.Y. Masoomi, A. Morsali, Coord. Chem. Rev. 256, 2921 (2012)CrossRefGoogle Scholar
  3. 3.
    A.D. Naik, M.M. Dîrtu, A.P. Railliet, J. Marchand-Brynaert, Y. Garcia, Polymers 3, 1750 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Morsali, M.Y. Masoomi, Coord. Chem. Rev. 253, 1882 (2009)CrossRefGoogle Scholar
  5. 5.
    D.G. Kurth, M. Higuchib, Soft Matter 2, 915 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Mahata, S. Natarajan, Eur. J. Inorg. Chem. 2005, 2156 (2005)CrossRefGoogle Scholar
  7. 7.
    Q.-X. Liu, L.-N. Yin, X.-M. Wu, J.-C. Feng, J.-H. Guo, H.-B. Song, Polyhedron 27, 87 (2008)CrossRefGoogle Scholar
  8. 8.
    B. Liu, G.-C. Guo, J.-S. Huang, J. Solid State Chem. 179, 3136 (2006)CrossRefGoogle Scholar
  9. 9.
    D.M. Ciurtin, N.G. Pschirer, M.D. Smith, U.H.F. Bunz, H.-C. zur Loye. Chem. Mater. 13, 2743 (2001)CrossRefGoogle Scholar
  10. 10.
    Z. Chen, X. Wu, S. Qin, C. Lei, F. Liang, CrystEngComm 13, 2029 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Mahmoudi, A. Morsali, CrystEngComm 9, 1062 (2007)CrossRefGoogle Scholar
  12. 12.
    Z. Popović, D. Matković-Čalogović, J. Popović, I. Vicković, M. Vinković, D. Vikić-Topić, Polyhedron 26, 1045 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Morsali, L.-G. Zhu, Inorg. Chem. Comm. 7, 1184 (2004)CrossRefGoogle Scholar
  14. 14.
    Z. Popović, G. Pavlović, D. Matković-Čalogović, Ž Soldin, Acta Crystallogr. C59, m165 (2003)Google Scholar
  15. 15.
    Y.-Q. Huang, Y. Wan, H.-Y. Chen, Y. Wang, Y. Zhao, X.-F. Xiao, New J. Chem. 40, 7587 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Wang, X.-Q. Zhao, N. Wang, Y.-C. Li, J. Coord. Chem. 68, 904 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Semerci, O.Z. Yeşilel, S. Keskin, C. Darcan, M. Taşe, H. Dalf, CrystEngComm 15, 1244 (2013)CrossRefGoogle Scholar
  18. 18.
    H.-Y. Wu, N. Wang, S.-T. Yue, Y.-L. Liu, J. Coord. Chem. 62, 2511 (2009)CrossRefGoogle Scholar
  19. 19.
    Z.-B. Han, Y. Ma, Z.-G. Sun, W.-S. You, Inorg. Chem. Comm. 9, 844 (2006)CrossRefGoogle Scholar
  20. 20.
    H.-T. Zhang, Y.-Z. Li, H.-Q. Wang, E.N. Nfor, X.-Z. You, CrystEngComm 7, 578 (2005)CrossRefGoogle Scholar
  21. 21.
    A. Moghimi, A. Shokrollahi, M. Shamsipur, H. Aghabozorg, M. Ranjbar, J. Mol. Struct. 701, 49 (2004)CrossRefGoogle Scholar
  22. 22.
    P. Gouverneur, W. Hoedeman, Anal. Chim. Acta 30, 519 (1964)CrossRefGoogle Scholar
  23. 23.
    CCD CrysAlis, RED CrysAlis, Version (Oxford Diffraction Ltd, Abingdon, 2008)Google Scholar
  24. 24.
    G.M. Sheldrick, Acta Crystallogr. C71, 3 (2015)Google Scholar
  25. 25.
    C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J. Appl. Crystallogr. 41, 466 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Alvarez, Dalton Trans. 42, 8617 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Milić, Ž Soldin, G. Giester, Z. Popović, D. Matković-Čalogović, Croat. Chem. Acta 82, 337 (2009)Google Scholar
  28. 28.
    L. Puntus, V. Zolin, V. Kudryashova, J. Alloys Compd. 374, 330 (2004)CrossRefGoogle Scholar
  29. 29.
    M.A.S. Goher, T.C.W. Mak, Struct. Chem. 5, 165 (1994)CrossRefGoogle Scholar
  30. 30.
    K.M. Harmon, P.W. Brown Jr., S.H. Gill, J. Mol. Struct. 448, 43 (1998)CrossRefGoogle Scholar
  31. 31.
    R.F. Evans, W. Kynaston, J. Chem. Soc. 1005 (1962)Google Scholar
  32. 32.
    H. Briehl, J. Butenuth, Thermochim. Acta 167, 249 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations