Fast One-Pot Photosynthesis of Plasmonic Protein-Coated Silver/Silver Bromide Nanoparticles with Efficient Photocatalytic Performance

  • Geomar F. Cruz
  • Aryane Tofanello
  • Juscemácia N. Araújo
  • Iseli L. Nantes-Cardoso
  • Fabio F. Ferreira
  • Wanius Garcia


Photocatalysis is a promising method with great potential to solve several environmental challenges. Plasmonic Ag/AgBr nanoparticles (Ag/AgBr-NPs) are stable and highly efficient photocatalysts under visible light. Here, we reported for the first time the fast one-pot photosynthesis of stable protein-coated Ag/AgBr-NPs under blue light illumination. The photosynthesis was a simple process, carried out by equimolar mixing of Ag+ and Br in the presence of protein, compatible with the green chemistry procedure. Electron microscopy showed that the Ag/AgBr-NPs were slightly heterogeneous in size and shape, and enveloped by a protein matrix responsible for colloidal stability. X-ray diffraction analysis showed that the Ag/AgBr-NPs were purely crystalline in nature. The content of metallic Ag0 in the Ag/AgBr-NPs was easily controlled varying the ratio between Ag+ and Br in the reaction. Plasmonic protein-coated Ag/AgBr-NPs showed photocatalytic activity for the degradation of methylene blue, which enhanced with the increase of metallic Ag0 content, attributed to the synergistic effects among the plasmonic band, photosensibility of semiconductor and decrease in the recombination rate of the electron–hole pairs by the protein layer.


Protein/Ag/AgBr nanoparticles Green chemistry Organic molecules Protein-coated Photocatalysis 



This study was funded by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) via grants number 2015/02897-3, 2015/17688-0, 2017/17275-3, 2017/16976-8, and also by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) via grant number 402289/2013-7. The authors are grateful to the Multiuser Central Facilities (UFABC) for the experimental support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    L. Sun, R. Zhang, Y. Wang, W. Chen, ACS Appl. Mater. Interfaces 6, 14819–14826 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Shahzad, T. Yu, W. Kim, RSC Adv. 6, 54709–54717 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Shahzad, W. Kim, T. Yu, Dalton Trans. 45, 9158–9165 (2016)CrossRefGoogle Scholar
  4. 4.
    Z. Feng, J. Yu, D. Sun, T. Wang, J. Colloid Interface Sci. 480, 184–190 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Makiura, T. Yonemura, T. Yamada, M. Yamauchi, R. Ikeda, H. Kitagawa, K. Kato, M. Takata, Nat. Mater. 8, 476–480 (2009)CrossRefGoogle Scholar
  6. 6.
    R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, Nat. Mater. 1, 169–172 (2002)CrossRefGoogle Scholar
  7. 7.
    Z. Wang, J. Liu, W. Chen, Dalton Trans. 41, 4866–4870 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Dai, L. Lu, J. Dong, Z. Ji, G. Zhu, Q. Liu, Z. Liu, Y. Zhang, D. Li, C. Liang, Dalton Trans. 42, 4657–4662 (2013)CrossRefGoogle Scholar
  9. 9.
    P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301–312 (2010)CrossRefGoogle Scholar
  10. 10.
    T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee, Colloids Surf. B 82, 152–159 (2011)CrossRefGoogle Scholar
  11. 11.
    V.S. Kotakadi, Y.S. Rao, S.A. Gaddam, T.N. Prasad, A.V. Reddy, D.V. Gopal, Colloids Surf. B 105, 194–198 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Dobrucka, J. Inorg. Organomet. Polym. (2017). Google Scholar
  13. 13.
    D.K. Ban, S. Paul, Colloids Surf. B 146, 577–584 (2016)CrossRefGoogle Scholar
  14. 14.
    J.N. Araújo, A. Tofanello, V.M. Silva, J.A.P. Sato, F.M. Squina, I.L. Nantes, W. Garcia, Int. J. Biol. Macromol. 102, 84–91 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Li, Y. Shen, A. Xie, X. Yu, L. Qui, L. Zhang, Q. Zhang, Green Chem. 9, 852–858 (2007)CrossRefGoogle Scholar
  16. 16.
    M.M. Husein, E. Rodil, J.H. Vera, Langmuir 22, 2264–2272 (2006)CrossRefGoogle Scholar
  17. 17.
    P. Suchomel, L. Kvitek, A. Panacek, R. Prucek, J. Hrbac, R. Vecerova, R. Zboril, PLoS ONE 10, e0119202 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Kataky, M.R. Bryce, B. Johnston, Analyst 125, 1447–1451 (2000)CrossRefGoogle Scholar
  19. 19.
    N. Kakuta, N. Goto, H. Ohkita, T. Mizushima, J. Phys. Chem. B 103, 5917–5919 (1999)CrossRefGoogle Scholar
  20. 20.
    C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, J. Phys. Chem. B 110, 4066–4072 (2006)CrossRefGoogle Scholar
  21. 21.
    M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, J. Am. Chem. Soc. 129, 9552–9553 (2007)CrossRefGoogle Scholar
  22. 22.
    P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, M. Whangbo, Chem. Eur. J. 15, 1821–1824 (2009)CrossRefGoogle Scholar
  23. 23.
    L. Kuai, B. Geng, X. Chen, Y. Zhao, Y. Luo, Langmuir 26, 18723–18727 (2010)CrossRefGoogle Scholar
  24. 24.
    X. Zhou, C. Hu, X. Hu, T. Peng, J. Qu, J. Phys. Chem. C 114, 2746–2750 (2010)CrossRefGoogle Scholar
  25. 25.
    R. Hong, T. Pan, J. Qian, H. Li, Chem. Eng. J. 119, 71–81 (2006)CrossRefGoogle Scholar
  26. 26.
    M.G. Jeong, H. Seo, K.D. Kim, D. Kim, Y. Kim, D. Lim, J. Mater. Sci. 47, 5190–5196 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Comparelli, E. Fanizza, M. Curri, P. Cozzoli, G. Mascolo, A. Agostiano, Appl. Catal. B 60, 1–11 (2005)CrossRefGoogle Scholar
  28. 28.
    N. Jain, A. Bhargava, J. Panwar, Chem. Eng. J. 243, 549–555 (2014)CrossRefGoogle Scholar
  29. 29.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  30. 30.
    F. Colussi, V.M. Silva, I. Miller, J. Cota, L.C. Oliveira, M. Oliveira Neto, F.M. Squina, W. Garcia, Amino Acids 47, 937–948 (2015)CrossRefGoogle Scholar
  31. 31.
    T.V. Souza, J.N. Araújo, V.M. Silva, M.V. Liberato, A.C. Pimentel, T.M. Alvarez, F.M. Squina, W. Garcia, Biotechnol. Rep. 9, 1–8 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Mishra, M. Sardar, Int. J. Biol. Macromol. 77, 105–113 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, J. Appl. Cryst. 48, 598–603 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Gražulis, A. Daškevič, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N.R. Serebryanaya, P. Moeck, R.T. Downs, A. Le Bail, Nucleic Acids Res. 40, D420–D427 (2012)Google Scholar
  35. 35.
    S. Gražulis, A. Merkys, A. Vaitkus, M. Okulič-Kazarinas, J. Appl. Cryst. 48, 85–91 (2015)CrossRefGoogle Scholar
  36. 36.
    H.M. Rietveld, Acta Cryst. 22, 151–152 (1967)CrossRefGoogle Scholar
  37. 37.
    H.M. Rietveld, J. Appl. Cryst. 2, 65–71 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Ciências Naturais e HumanasUniversidade Federal do ABC (UFABC)Santo AndréBrazil

Personalised recommendations