Advertisement

Effect of Biopolymer Blend Matrix on Structural, Optical and Biological Properties of Chitosan–Agar Blend ZnO Nanocomposites

  • G. Magesh
  • G. Bhoopathi
  • N. Nithya
  • A. P. Arun
  • E. Ranjith Kumar
Article

Abstract

The present research is focused on the development of ecofriendly biopolymer blend based nanocomposites to enhance the effect of cytotoxic activity. Novel eco-friendly synthesis of pure Chitosan–Agar blend and Chitosan–Agar/ZnO nanocomposites was successfully synthesized by in-situ chemical synthesis method. The influence of Chitosan–Agar (1:1 wt/wt%) concentrations (0.1, 0.5, 1 and 3 g) was studied. The presence of ZnO nanoparticles in Chitosan–Agar polymer matrix was confirmed by UV, FTIR, XRD, FESEM, EDAX and TEM. The crystallite size of the nanocomposites in the range of 12–17 nm is observed from XRD analysis. PL and UV reveal that Nanocomposites shows an blue shift by increase in the blend concentrations. TEM analysis shows that 0.1 and 3 g of Chitosan–Agar/ZnO Nanocomposites are in spindle and spherical shape with polycrystalline nature. The prepared Nanocomposites shows the respectable Antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Pseudomonas aureginosa and Klebsilla pneumonia) bacteria. The potential toxicity of Chitosan–Agar/ZnO nanocomposites was studied for normal (L929) and breast cancer cell line (MB231). The result of this investigation shows that the Chitosan–Agar/ZnO nanocomposites deliver a dose dependent toxicity in normal and cancer cell line.

Keywords

Nanocomposites Structural analysis Morphological analysis Antibacterial activity Anticancer activity 

References

  1. 1.
    L.A. Utracki (ed.) Polymer Blends Handbook (Kluwer Academic Publication Print, Dordrecht, 2003), pp. 1–122CrossRefGoogle Scholar
  2. 2.
    R. Tong, J. Cheng, Anticancer Polymeric Nanomedicines. Polym. Rev. 47, 345–381 (2007)Google Scholar
  3. 3.
    L. Yu, Biodegradable Polymer Blends and Composites from Renewable Resources. (Wiley, Hoboken, 2009)Google Scholar
  4. 4.
    E.A. El-hefian, M.M. Nasef, A.H. Yahaya, Chitosan-based polymer blends: current status and applications. J. Chem. Soc. Pak. 36(1), 11–27 (2014)Google Scholar
  5. 5.
    H. Honarkar, M. Barikani, Applications of biopolymers I: Chitosan. Monatsh. Chem. 140, 1403–1420 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Li, Y. Wu, L. Zhao, Antibacterial activity and mechanism of Chitosan with ultra high molecular weight. Carbohydr. Polym. 148, 200–205 (2016)CrossRefGoogle Scholar
  7. 7.
    O. Gh, A. Rawad, R.H. Yahya, Structural, optical, and electrical characterization of Chitosan: methylcellulose polymer blends based film. J. Mater. Sci. Mater. Electron. 28, 10283–10294 (2017)CrossRefGoogle Scholar
  8. 8.
    V.K. Malesu, D.Sahoo and A.P.L. Nayak, Chitosan–sodium alginate nanocomposites blended with cloisite 30b as a novel drug delivery system for anticancer drug curcumin. Int. J. Appl. Biol. Pharm. Technol. 2(3), 402–411 (2011)Google Scholar
  9. 9.
    E. Pulieri et al., Chitosan/gelatin blends for biomedical applications. J. Biomed. Mater. Res. A 86, 311–322 (2007)Google Scholar
  10. 10.
    J. F. Mendes, J.E. Oliveira, Biodegradable polymer blends based on cornstarch and thermoplastic Chitosan processed by extrusion. Carbohydr. Polym. 137, 1–19, (2015)Google Scholar
  11. 11.
    C. Tangsadthakun, S. Kanokpanont, R. Pichyangkura, T. Banaprasert, Y. Tabata, The influence of molecular weight of Chitosan on the physical and biological properties of collagen/Chitosan scaffolds. J. Biomater. Sci. Polym. 18(2), 147–163 (2012)CrossRefGoogle Scholar
  12. 12.
    H.P.S.A. Khalil et al., Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. Express Polym. Lett. 11(4), 244–265 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Saxena, A. Tahir, M. Kaloti, J. Ali, H.B. Bohidar, Effect of agar–gelatin compositions on the release of salbutamol tablets. Int. J. Pharm. Investig. 1(2), 93–98 (2011)CrossRefGoogle Scholar
  14. 14.
    E.A. El-hefian, M.M. Nasef, A. Hamid, Preparation and characterization of Chitosan/Agar blended films: part 1. chemical structure and morphology. E-Journal Chem. 9(3), 1431–1439 (2012)CrossRefGoogle Scholar
  15. 15.
    Z. Hu, P. Hong, M. Liao, S. Kong, N. Huang, C. Ou, Preparation and characterization of Chitosan–Agarose composite films. Materials. 9, 1–9 (2016)Google Scholar
  16. 16.
    S.I. Thakore, Role of biopolymers in green nanotechnology. Prod. Appl. Biopolym. 125, 121–140 (2015)Google Scholar
  17. 17.
    Q. Guo et al., Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6, 2037–2050 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Feldman, Review polyblend nanocomposites. J. Macromol. Sci. A 52, 648–658 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Sirelkhatim, S. Mahmud, A. Seeni, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro, Lett. 7(3), 219–242 (2015)CrossRefGoogle Scholar
  20. 20.
    G.K. Prashanth et al., In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala Int. J. Mod. Sci. 1, 67–77 (2015)CrossRefGoogle Scholar
  21. 21.
    Z. Emami-karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res. 5(12), 1368–1373 (2011)Google Scholar
  22. 22.
    S. Agnihotri, S. Mukherji, Antimicrobial Chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl. Nanosci. 2, 179–188 (2012)CrossRefGoogle Scholar
  23. 23.
    E.A. El-Hefian, M.M. Nasef, Preparation and characterization of Chitosan/Agar blends: rheological and thermal studies. J. Chilean Chem. Soc. (2016)  https://doi.org/10.4067/S0717-97072010000100031
  24. 24.
    M.H. Najar, K. Majid, Synthesis and characterization of nanocomposite of polythiophene with Na2[Fe(CN)3(OH)(NO)C6H12N4] H2O: a potent material for EMI shielding applications. J. Mater. Sci. Mater. Electron. 26, 6458–6470 (2013)CrossRefGoogle Scholar
  25. 25.
    P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)CrossRefGoogle Scholar
  26. 26.
    R.M. Hodge, G.H. Edward, G.P. Simon, Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37, 1371 (1996)CrossRefGoogle Scholar
  27. 27.
    R. Javed, M. Usman, S. Tabassum, M. Zia, Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles. Appl. Surf. Sci. 386, 319–326 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Dayakar, K.V. Rao, K. Bikshalu, V. Rajendar, S.-H. Park, Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor. Mater. Sci. Eng. C 75, 1472–1479 (2017)CrossRefGoogle Scholar
  29. 29.
    G. Shan, H. Hao, X. Wang, Z. Shang, Y. Chen, Y. Liu, The effect of PVP on the formation and optical properties ZnO/Ag nanocomposites. Colloids Surf. A 405, 1–5 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Elashmawi, A.M. Abdelghany, N.A. Hakeem, Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites. J. Mater. Sci. 24, 2956–2961 (2013)Google Scholar
  31. 31.
    N.S. Alghunaim, Results in physics spectroscopic analysis of PMMA/PVC blends containing CoCl2. Results Phys. 5, 331–336 (2015)CrossRefGoogle Scholar
  32. 32.
    I. Pankove, Optical Process in Semiconductors. (Prentice-Hall, New Jersey, 1971)Google Scholar
  33. 33.
    K.M. Reddy, S.V. Manorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mat. Chem. Phys. 78, 239–245 (2002)CrossRefGoogle Scholar
  34. 34.
    M.M. AbdElhady, Preparation and characterization of Chitosan/Zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int. J. Carbohydr. Chem. 2012, 1–6 (2012)CrossRefGoogle Scholar
  35. 35.
    E.A. El-Hefian, M.M. Nasef, Preparation and characterization of Chitosan/Agar blends: rheological and thermal studies. J. Chilean Chem. Soc. 55, 130–136 (2010)CrossRefGoogle Scholar
  36. 36.
    G.V.R. Murugan, T.M.G. Ravi, Comparative study of structural and magnetic properties of transition metal (Co, Ni) doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 26, 7205–7213 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Varghese, P. Periyat, Silver-doped zinc oxide as a nanofiller for development of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. Adv. Polym. Technol. 37, 137–143 (2016)Google Scholar
  38. 38.
    Z.J. Yu, M.R. Kumar, D.L. Sun, L.T. Wang, R.Y. Hong, Large scale production of hexagonal ZnO nanoparticles using PVP as a surfactant. Mater. Lett. 166, 284–287 (2016)CrossRefGoogle Scholar
  39. 39.
    S.B. Rana, A. Singh, N. Kaur, Structural and optoelectronic characterization of prepared and Sb doped ZnO nanoparticles. J. Mater. Sci. 24, 44–52 (2013)Google Scholar
  40. 40.
    R. Singh, S.J. Dhoble, Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs. Bull. Mater. Sci. 34(3), 557–562 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Dey, B. Das, R. Voggu, A. Nag, D.D. Sarma, C.N.R. Rao, Interaction of CdSe and ZnO nanocrystals with electron-donor and -acceptor molecules. Chem. Phys. Lett. 556, 200–206 (2013)CrossRefGoogle Scholar
  42. 42.
    R. Bomila, S. Srinivasan, A. Venkatesan, B. Bharath, K. Perinbam, Structural, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method. Mater. Res. Innov. (2017).  https://doi.org/10.1080/14328917.2017.1324379 Google Scholar
  43. 43.
    A.M. Youssef, I.E. El-nagar, E. Amm, A.E. Aa, A.M. Youssef, D.P. Chemica, Development and characterization of CMC/PVA films loaded with zno-nanoparticles for antimicrobial packaging application. Der Pharm. Chem. 9(9), 157–163 (2017)Google Scholar
  44. 44.
    K. Vidhya, M. Saravanan, V.P. Devarajan, S. Satheeskumar, M.A. Ali, Green synthesis and anti-cancer activity of multifunctional ZnO: Mn-natural biomolecule quantum dots system. Malaya J. Biosci. 1(4), 267–272 (2014)Google Scholar
  45. 45.
    B. Balraj et al., Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigation on anticancer and antibacterial activity. Res. Chem. Intermed. 43, 2367–2376 (2016)CrossRefGoogle Scholar
  46. 46.
    D. Mahendiran et al., Biosynthesis of zinc oxide nanoparticles using plant extracts of aloe vera and Hibiscus sabdariffa: phytochemical, antibacterial, antioxidant and anti-proliferative studies. BioNanoScience. 7, 530–545 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPSG College of Arts and ScienceCoimbatoreIndia
  2. 2.Department of Mechanical EngineeringKumaraguru College of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsDr. N.G. P. Institute of TechnologyCoimbatoreIndia

Personalised recommendations