Advertisement

Polymer Composite Reactor with “Autonomous” Access for Aquatically Self-Governed Catalytic Ability

  • Xin Bao
  • Chongchong Zuo
  • Qin Zhou
  • Shuping Wu
  • Maiyong Zhu
  • Rong Luo
  • Songjun Li
Article
  • 52 Downloads

Abstract

This study was aimed at addressing the present challenge in self-controlled catalysts, about how to furnish the catalysts with self-governed catalytic ability in water. This objective was met by constructing a polymer composite reactor inspired from marine mussels, made of an aquatically autonomous polymer and encapsulated metal nanoparticles. The aquatically autonomous properties at the polymer support, in combination with the catalytic ability of metal nanoparticles, allowed the reactor to run catalysis with aquatically ‘autonomous’ access, which led to the occurrence of aquatically self-governed catalytic ability. This reactor showed poor catalytic reactivity in water at relatively low temperatures due to the ‘closed’ polymeric networks, which blocked access to the encapsulated metal nanoparticles. This reactor showed, however, significant reactivity in water at relatively high temperatures in response to the ‘openness’ of the access. Unlike the switchable catalysis at reported catalytic reactors which usually involved conventional hydrophilic/hydrophobic transition and the leaching of metal nanoparticles, the switchable catalysis at this reactor ran naturally with the aquatically autonomous access that did not involve any hydrophilic/hydrophobic transition and the leaching of metal nanoparticles. This protocol suggested opportunities for developing robust smart catalysts for aquatic chemical processes.

Keywords

Polymer composite reactor Switchable catalysis Autonomous access, aquatically self-governed ability 

Notes

Acknowledgements

The authors want to express their gratitude to the National Natural Science Foundation of China (Nos. 51473070 and 21403091). Thanks also should be expressed to the Jiangsu Province for support under the innovation/entrepreneurship program (Surencaiban [2015]26).

Supplementary material

10904_2018_847_MOESM1_ESM.doc (228 kb)
Supplementary material 1 (DOC 227 KB)

References

  1. 1.
    A.J. Teator, D.N. Lastovickova, C.W. Bielawski, Chem. Rev. 116, 1969–1992 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Zhang, M. Zhang, K. Tang, F. Verpoort, T. Sun, Small 10, 32–46 (2014)CrossRefGoogle Scholar
  3. 3.
    G. Liu, D. Wang, F. Zhou, W. Liu, Small 11, 2807–2816 (2015)CrossRefGoogle Scholar
  4. 4.
    C.L. Zhang, F.H. Cao, J.L. Wang, Z.L. Yu, J. Ge, Y. Lu, Z.H. Wang, S.H. Yu, ACS Appl. Mater. Interfaces 9, 24857–24860 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Lu, R.K. O’Reilly, Curr. Opin. Biotechnol. 24, 639–645 (2013)CrossRefGoogle Scholar
  6. 6.
    G. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G.H. Wang, F. Schüth, Chem. Rev. 116, 14056–14119 (2016)CrossRefGoogle Scholar
  7. 7.
    B.P. Lee, S. Konst, Adv. Mater. 26, 3415–3419 (2014)CrossRefGoogle Scholar
  8. 8.
    W. Wei, L. Petrone, Y. Tan, H. Cai, J.N. Israelachvili, A. Miserez, J.H. Waite, Adv. Funct. Mater. 26, 3496–3507 (2016)CrossRefGoogle Scholar
  9. 9.
    S.A. Mian, L.M. Yang, L.C. Saha, E. Ahmed, M. Ajmal, E. Ganz, Langmuir 30, 6906–6914 (2014)CrossRefGoogle Scholar
  10. 10.
    G.P. Maier, M.V. Rapp, J.H. Waite, J.N. Israelachvili, A. Butler, Science 349, 628–632 (2015)CrossRefGoogle Scholar
  11. 11.
    Y.B. Lee, Y.M. Shin, E.M. Kim, J.Y. Lee, J. Lim, S.K. Kwon, H. Shin, J. Mater. Chem. B 4, 6012–6022 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Lee, Y.M. Ha, S.H. Lee, Y. Ko, H. Muramatsu, Y.A. Kim, M. Parke, Y.C. Jung, RSC Adv. 6, 87044–87048 (2016)CrossRefGoogle Scholar
  13. 13.
    B.K. Ahn, D.W. Lee, J.N. Israelachvili, J.H. Waite, Nat. Mater. 13, 867–872 (2014)CrossRefGoogle Scholar
  14. 14.
    M.A. North, C.A. Del Grosso, J.J. Wilker, ACS Appl. Mater. Interfaces 9, 7866–7872 (2017)CrossRefGoogle Scholar
  15. 15.
    D. Bambusi, Commun. Math. Phys. 353, 353–378 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Patchkovskii, H.G. Muller, Comput. Phys. Commun. 199, 153–169 (2016)CrossRefGoogle Scholar
  17. 17.
    F. Herbst, D. Döhler, P. Michael, W.H. Binde, Macromol. Rapid Commun. 34, 203–220 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, M. Zhu, S. Li, J. Mater. Chem. A 2, 6834–6839 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Li, Y. Ge, A.P.F. Turner, Adv. Funct. Mater. 21, 1194–1200 (2011)CrossRefGoogle Scholar
  20. 20.
    C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez, J. Ruiza, D. Astruc, Chem. Commun. 50, 14194–14196 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Li, Y. Luo, M. Whitcombe, S.A. Piletsky, J. Mater. Chem. A 1, 15102–15109 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Han, X. Yuan, M. Zhu, S. Li, M. Whitcombe, S.A. Piletsky, Adv. Funct. Mater. 24, 4996–5001 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Xu, B. Bai, C. Ding, H. Wang, Y. Suo, Ind. Eng. Chem. Res. 54, 3268–3278 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Peng, X. Yuan, M. Zhu, S. Li, Polym. Chem. 5, 562–566 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Wei, T. Zhou, S. Wu, X. Shen, M. Zhu, S. Li, RSC Adv. 8, 1610–1620 (2018)CrossRefGoogle Scholar
  26. 26.
    R. Luo, M. Zhu, X. Shen, S. Li, J. Catal. 331, 49–56 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Polymer Materials, School of Materials Science & EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Leather Chemistry and EngineeringQilu University of TechnologyJinanChina

Personalised recommendations