Skip to main content
Log in

Polymer Composite Reactor with “Autonomous” Access for Aquatically Self-Governed Catalytic Ability

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study was aimed at addressing the present challenge in self-controlled catalysts, about how to furnish the catalysts with self-governed catalytic ability in water. This objective was met by constructing a polymer composite reactor inspired from marine mussels, made of an aquatically autonomous polymer and encapsulated metal nanoparticles. The aquatically autonomous properties at the polymer support, in combination with the catalytic ability of metal nanoparticles, allowed the reactor to run catalysis with aquatically ‘autonomous’ access, which led to the occurrence of aquatically self-governed catalytic ability. This reactor showed poor catalytic reactivity in water at relatively low temperatures due to the ‘closed’ polymeric networks, which blocked access to the encapsulated metal nanoparticles. This reactor showed, however, significant reactivity in water at relatively high temperatures in response to the ‘openness’ of the access. Unlike the switchable catalysis at reported catalytic reactors which usually involved conventional hydrophilic/hydrophobic transition and the leaching of metal nanoparticles, the switchable catalysis at this reactor ran naturally with the aquatically autonomous access that did not involve any hydrophilic/hydrophobic transition and the leaching of metal nanoparticles. This protocol suggested opportunities for developing robust smart catalysts for aquatic chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.J. Teator, D.N. Lastovickova, C.W. Bielawski, Chem. Rev. 116, 1969–1992 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. J. Zhang, M. Zhang, K. Tang, F. Verpoort, T. Sun, Small 10, 32–46 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. G. Liu, D. Wang, F. Zhou, W. Liu, Small 11, 2807–2816 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. C.L. Zhang, F.H. Cao, J.L. Wang, Z.L. Yu, J. Ge, Y. Lu, Z.H. Wang, S.H. Yu, ACS Appl. Mater. Interfaces 9, 24857–24860 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. A. Lu, R.K. O’Reilly, Curr. Opin. Biotechnol. 24, 639–645 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. G. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G.H. Wang, F. Schüth, Chem. Rev. 116, 14056–14119 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. B.P. Lee, S. Konst, Adv. Mater. 26, 3415–3419 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. W. Wei, L. Petrone, Y. Tan, H. Cai, J.N. Israelachvili, A. Miserez, J.H. Waite, Adv. Funct. Mater. 26, 3496–3507 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S.A. Mian, L.M. Yang, L.C. Saha, E. Ahmed, M. Ajmal, E. Ganz, Langmuir 30, 6906–6914 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. G.P. Maier, M.V. Rapp, J.H. Waite, J.N. Israelachvili, A. Butler, Science 349, 628–632 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Y.B. Lee, Y.M. Shin, E.M. Kim, J.Y. Lee, J. Lim, S.K. Kwon, H. Shin, J. Mater. Chem. B 4, 6012–6022 (2016)

    Article  CAS  Google Scholar 

  12. H. Lee, Y.M. Ha, S.H. Lee, Y. Ko, H. Muramatsu, Y.A. Kim, M. Parke, Y.C. Jung, RSC Adv. 6, 87044–87048 (2016)

    Article  CAS  Google Scholar 

  13. B.K. Ahn, D.W. Lee, J.N. Israelachvili, J.H. Waite, Nat. Mater. 13, 867–872 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. M.A. North, C.A. Del Grosso, J.J. Wilker, ACS Appl. Mater. Interfaces 9, 7866–7872 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. D. Bambusi, Commun. Math. Phys. 353, 353–378 (2017)

    Article  Google Scholar 

  16. S. Patchkovskii, H.G. Muller, Comput. Phys. Commun. 199, 153–169 (2016)

    Article  CAS  Google Scholar 

  17. F. Herbst, D. Döhler, P. Michael, W.H. Binde, Macromol. Rapid Commun. 34, 203–220 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhou, M. Zhu, S. Li, J. Mater. Chem. A 2, 6834–6839 (2014)

    Article  CAS  Google Scholar 

  19. S. Li, Y. Ge, A.P.F. Turner, Adv. Funct. Mater. 21, 1194–1200 (2011)

    Article  CAS  Google Scholar 

  20. C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez, J. Ruiza, D. Astruc, Chem. Commun. 50, 14194–14196 (2014)

    Article  CAS  Google Scholar 

  21. S. Li, Y. Luo, M. Whitcombe, S.A. Piletsky, J. Mater. Chem. A 1, 15102–15109 (2013)

    Article  CAS  Google Scholar 

  22. Y. Han, X. Yuan, M. Zhu, S. Li, M. Whitcombe, S.A. Piletsky, Adv. Funct. Mater. 24, 4996–5001 (2014)

    Article  CAS  Google Scholar 

  23. X. Xu, B. Bai, C. Ding, H. Wang, Y. Suo, Ind. Eng. Chem. Res. 54, 3268–3278 (2015)

    Article  CAS  Google Scholar 

  24. B. Peng, X. Yuan, M. Zhu, S. Li, Polym. Chem. 5, 562–566 (2014)

    Article  CAS  Google Scholar 

  25. W. Wei, T. Zhou, S. Wu, X. Shen, M. Zhu, S. Li, RSC Adv. 8, 1610–1620 (2018)

    Article  CAS  Google Scholar 

  26. R. Luo, M. Zhu, X. Shen, S. Li, J. Catal. 331, 49–56 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to the National Natural Science Foundation of China (Nos. 51473070 and 21403091). Thanks also should be expressed to the Jiangsu Province for support under the innovation/entrepreneurship program (Surencaiban [2015]26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Luo or Songjun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 227 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Zuo, C., Zhou, Q. et al. Polymer Composite Reactor with “Autonomous” Access for Aquatically Self-Governed Catalytic Ability. J Inorg Organomet Polym 28, 1511–1519 (2018). https://doi.org/10.1007/s10904-018-0847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0847-2

Keywords

Navigation