Advertisement

Studies on the Structural, Morphological, Optical, Electro Chemical and Antimicrobial Activity of Bare, Cu and Ag @ WO3 Nanoplates by Hydrothermal Method

  • V. Rajendran
  • B. Deepa
Article
  • 105 Downloads

Abstract

Hydrothermal synthesis eases the lopsided growth of monoclinic bare, Cu and Ag @ WO3 nanoplates that exhibit good physic-chemical, optical and electro chemical properties. The powder X-ray diffraction patterns reveals that the synthesized samples WO3 samples are in monoclinic structure. The 2 mol% of Cu and Ag dopants were increases the crystallinity and the predominant peaks are shifted to higher glancing angles. The variations observed in lattice parameter values indicate the incorporation of dopants in the WO3 crystal lattice. The FESEM and HRTEM images revealed nanoplate morphology with the particle size range 100–200 nm of diameter and 200–300 nm of thickness. The prominent absorption peak of bare, Cu and Ag @ WO3 nanoplates were observed in visible region at 332, 326 and 323 nm respectively. The strong continuous from luminescence emission peaks were observed in blue to yellow region with optimal intensity. The electro chemical property was studied using cyclic voltammetry which reveals quick electron transfer accessed in Cu and Ag doped materials. The antimicrobial activity of synthesized bare, Cu and Ag @ WO3 was investigated on the gram positive, gram negative and fungus strains and observed efficiency of inhibition is exclusively explained.

Keywords

Tungsten oxide CV EIS Antimicrobial activity 

Notes

Acknowledgements

The author is grateful to the Department of Science and Technology (DST) for extending financial assistance to carry out this work.

References

  1. 1.
    S.K. Deb, Philos. Mag. 17, 801 (1973)CrossRefGoogle Scholar
  2. 2.
    L. Zhou, Q. Ren, X. Zhou, J. Tang, Z. Chen, C. Yu, Microporous Mesoporous Mater. 109, 248 (2008)CrossRefGoogle Scholar
  3. 3.
    C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becka, J. Phys. Chem. B 110, 10430 (2006)CrossRefGoogle Scholar
  4. 4.
    A.I. Gavrilyuk, B.P. Zakharchenya, F.A. Chudnovskii, Electrochim. Acta 44, 3027 (1999)CrossRefGoogle Scholar
  5. 5.
    C.S. Blackman, I.P. Parkin, Chem. Mater. 17, 1583 (2005)CrossRefGoogle Scholar
  6. 6.
    S.M.A. Durrani, E.E. Khawaja, M.A. Salim, M.F. Al-Kuhaili, A.M. Al-Shukri, Sol. Energy Mater. Sol. Cells 71, 313 (2002)CrossRefGoogle Scholar
  7. 7.
    S.H. Lee, H.M. Cheong, P. Liu, D. Smith, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Electrochim. Acta 46, 1995 (2001)CrossRefGoogle Scholar
  8. 8.
    S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, M.C. Kanan, Sensors 9, 8158 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Mohammed Harshulkha, K. Janaki, G. Velraj, R. Sakthi Ganapathy, S. Krishnaraj, J. Mater. Sci. Mater. Electron. 27, 3158 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Sharma, A. Kumar. M. Naushad, A. Kumar, A.H. Al-Muhtaseb, P. Dhiman, A.A. Ghfar, F.J. Stadler, M.R. Khan, J. Clean. Prod. 172, 2919 (2018)CrossRefGoogle Scholar
  11. 11.
    B. Yan, Y. Xu, N.K. Goh, L.S. Chia, Chem. Commun. 21, 2169 (2000)CrossRefGoogle Scholar
  12. 12.
    B. Yang, P.R.F. Barnes, W. Bertram, V. Luca, J. Mater. Chem. 17, 2722 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Regragui, M. Addou, A. Outzourhit, E.E. Idressi, A. kachouane, A. Bougrine, Sol. Energy Mater. Sol. Cells 77, 341 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Parthibavarman, K. Vallalperuman, S. Sathiskumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Electron. 25, 730 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Fujita, Y. Morimoto, A. Ogami, T. Myojyo, I. Tanaka, M. Shimada, W.N. Wang, S. Endoh, K. Uchida, T. Nakazato, K. Yamamoto, H. Fukui, M. Horie, Y. Yoshida, H. Iwahashi, J. Nakanishi, Toxicology 258, 47 (2009)CrossRefGoogle Scholar
  16. 16.
    R.D. Handy, R. Owen, E. Valsami-Jones, Ecotoxicology 17, 315 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Meng, T. Xia, S. George, A.E. Nel, ACS Nano 3, 1620 (2009)CrossRefGoogle Scholar
  18. 18.
    A.A. Shvedova, A. Pietroiusti, B. Fadeel, V.E. Kagan, Toxicol. Appl. Pharmacol. 261, 121 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, ACS Nano 6, 4349 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Koga, T. Ikeshoji, K.I. Sugawara, Phys. Rev. Lett. 92, 115507 (2004)CrossRefGoogle Scholar
  21. 21.
    K. Donaldson, C.A. Poland, F.A. Murphy, M. Macfarlane, T. Chernova, A. Schinwald, Adv. Drug Deliv. Rev. 65, 2078 (2013)CrossRefGoogle Scholar
  22. 22.
    L.M. Dorfman, G.E. Adams, NSRDS-NBS 46, 1–72 (1973)Google Scholar
  23. 23.
    K. Onoda., J. Watanabe., Y. Nakagawa, I. Izumi, Denki Kagak 56, 1108 (1988)Google Scholar
  24. 24.
    C. Wei, W.Y. Lin., Z. Zainal, N.E. Williams, K. Zhu, A.P. Kruzic, R.L. Snuth, K. Rajeshwar, Environ. Sci. Technol. 28, 934 (1994)CrossRefGoogle Scholar
  25. 25.
    T. Matsunaga, M. Okochi, Environ. Sci. Technol. 29, 501 (1995)CrossRefGoogle Scholar
  26. 26.
    S. Wojtya, W. Macyk, T. Baran, Photochem. Photobiol. Sci. 16, 1079 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Bekbölet, C.V. Araz, Chemosphere 32, 959 (1996)CrossRefGoogle Scholar
  28. 28.
    A. Hameed, M.A. Gondal, Z.H. Yamani, Catal. Commun. 5, 715 (2004)CrossRefGoogle Scholar
  29. 29.
    J. Jiang, S.H. Kim, L. Piao, Nanoscale 7, 8299 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Ghodake, S.R. Lim, D.S. Lee, Colloidal Surf. B 108, 147 (2013)CrossRefGoogle Scholar
  31. 31.
    H.H. Lara, N.V. Ayala-Nunez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, J. Nanobiotechnol. 8, 1 (2010)CrossRefGoogle Scholar
  32. 32.
    G. Sharma, D. Kumar, A. Kumar, A.H. Al-Muhtaseb, D. Pathania, Mu. Naushad, G.T. Mola, Mater. Sci. Eng. C 71, 1216 (2017)CrossRefGoogle Scholar
  33. 33.
    G. Sharma, B. Thakur, Mu. Naushad, A.H. Al-Muhtaseb, A. Kumar, M. Sillanpaa, G.T. Mola, Mater. Chem. Phys. 193, 129 (2017)CrossRefGoogle Scholar
  34. 34.
    M.A. Gondal, M.A. Dastageer, A. Khalil, Catal. Commun. 9, 214 (2009)CrossRefGoogle Scholar
  35. 35.
    R. Bushra, Mu. Naushad, G. Sharma, A. Azam, Z.A. ALOthman, Korean J. Chem. Eng. 34, 1970 (2017)CrossRefGoogle Scholar
  36. 36.
    C.H. Liu, L. Zhang, Y.-J. He, Thin Solid Film 304, 13 (1997)CrossRefGoogle Scholar
  37. 37.
    B. Deepa, R. Mekala, V. Rajendran, IJNB 6, 34 (2016)Google Scholar
  38. 38.
    A. Kubaka, M.J. Muntoz-Bastista, M. Ferrer, M. Fernandez-Garcia, Appl. Catal. B 140, 680 (2013)CrossRefGoogle Scholar
  39. 39.
    L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B. Roldan Cuenya, L.M. Tiginyanuf, V.V. Ursaki, V. Sontea, A. Schulte, Sens. Actuators A 189, 9715 (2014)Google Scholar
  40. 40.
    R. Radha, A. Srinivasan, P. Manimuthu, S. Balakumar, J. Mater. Chem. C 3, 39 (2015)CrossRefGoogle Scholar
  41. 41.
    D.P. Joseph, C. Venkateswaren, J. At. Mol. Opt. Phys. 7 270540 (2011)Google Scholar
  42. 42.
    A. Kumar, M. Naushad, A. Rana, Inammuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, Int. J. Biol. Macromol. 104, 1172 (2017)CrossRefGoogle Scholar
  43. 43.
    H. Katsumata, Y. Oda, S. Kaneco, T. Suzuki, RSC Adv. 3, 5028 (2013)CrossRefGoogle Scholar
  44. 44.
    M.T. Chang, L.J. Chou, Y.L. Chueh, Y.C. Lee, C.H. Hsieh, C.D. Chen, Y.W. Lan, L.J. Chen, Small 3, 658 (2007)CrossRefGoogle Scholar
  45. 45.
    L. Tian, L. Ye, J. Liu, L. Zan, Catal. Commun. 17, 99 (2012)CrossRefGoogle Scholar
  46. 46.
    Q.-q. Jia, H.-m. Ji, P. Gao, X. Bai, Z.-g. Jin, J. Mater. Sci. Mater. Electron. 26, 5792 (2015)CrossRefGoogle Scholar
  47. 47.
    C.-Y. Su, H.-C. Lin, J. Phys. Chem. C 113, 4042 (2009)CrossRefGoogle Scholar
  48. 48.
    B. Choudhury, M. Dey, A. Choudhury, Appl. Nanosci. 4, 499 (2014)CrossRefGoogle Scholar
  49. 49.
    J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773 (2006)CrossRefGoogle Scholar
  50. 50.
    P.V. Kamat, J. Phys. Chem. Lett. 2, 242 (2011)CrossRefGoogle Scholar
  51. 51.
    B.F. Xin, L.Q. Jing, Z.Y. Ren, B.Q. Wang, H.G. Fu, J. Phys. Chem. B 109, 2805 (2005)CrossRefGoogle Scholar
  52. 52.
    J. Yan, T. Wei, J. Cheng, Z. Fan, M. Zhang, Mater. Res. Bull. 45, 210 (2010)CrossRefGoogle Scholar
  53. 53.
    C.P. Hsu, K.M. Lee, J.T.W. Huang, C.Y. Lin, C.H. Lee, L.P. Wang, S.Y. Tsaki, K.C. Ho, Electrochim. Acta 53, 7514 (2008)CrossRefGoogle Scholar
  54. 54.
    C.H. Ku, J.J. Wu, Appl. Phys. Lett. 91, 093117 (2007)CrossRefGoogle Scholar
  55. 55.
    K.M. Lee, V. Suryanarayanan, K.C. Ho, Sol. Energy Mater. Sol. Cells 91, 1416 (2007)CrossRefGoogle Scholar
  56. 56.
    Al-Harden, M.J. Abdullah, A.A. Aziz, Appl. Sur. Sci. 257, 8993 (2011)CrossRefGoogle Scholar
  57. 57.
    T.P. Hulser, H. Wiggers, F.E. Kruis, A. Lorke, Sens. Actuators B 109, 13 (2005)CrossRefGoogle Scholar
  58. 58.
    A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb. M. Naushad, A.A. Ghfar, F.J. Stadler, Chem. Eng. J. 334, 462 (2018)CrossRefGoogle Scholar
  59. 59.
    S.A. Makhiouf, K.M.S. Khalil, Solid State Ion. 164, 97 (2003)CrossRefGoogle Scholar
  60. 60.
    N.K. Pandey, K. Tiwari, A. Roy, Bull. Mater. Sci. 35, 347 (2012)CrossRefGoogle Scholar
  61. 61.
    G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J.Z. Zhang, Y. Li, Energy Environ. Sci. 5, 6180 (2012)CrossRefGoogle Scholar
  62. 62.
    P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, J. Wudtipan, K. Srijan, S. Kaewtaro, Powder Technol. 219, 158 (2012)CrossRefGoogle Scholar
  63. 63.
    M. Fang, J.H. Chen, X.L. Xu, P.H. Yang, H.F. Hildebrand, Int. J. Antimicrob. Agents 27, 513 (2006)CrossRefGoogle Scholar
  64. 64.
    N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 03500466 (2008)CrossRefGoogle Scholar
  65. 65.
    J. Portier, H.S. Hilal, I. Saadeddin, S.J. Hwang, M.A. Subramanian, G. Campet, Prog. Solid State Chem. 32, 207 (2004)CrossRefGoogle Scholar
  66. 66.
    A. Gajewicz, N. Schaeublin, B. Rasulev, S. Hussain, D. Leszczynska, T. Puzyn, J. Leszczynski, Nanotoxicology 3, 313 (2015)CrossRefGoogle Scholar
  67. 67.
    N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS Microbiol. Lett. 279, 71 (2008)CrossRefGoogle Scholar
  68. 68.
    C. Abinaya, M. Marikkannan, M. Manikandan, J. Mayandi, P. Suresh, V. Shanmugaiah, C. Ekstrum, J.M. Pearce, Mater. Chem. Phys. 184, 172 (2016)CrossRefGoogle Scholar
  69. 69.
    M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, Mu. Naushad. Colloids Surf. B 157, 456 (2017)CrossRefGoogle Scholar
  70. 70.
    G. Sharma, S. Bhogal, Mu. Naushad, Inamuddin, A. Kumar, F.J. Stadler, J. Photochem. Photobiol. A 347, 235 (2017)CrossRefGoogle Scholar
  71. 71.
    B. Halliwell, J.M. Gutteridge, Free Radicals in Biology and Medicine (Oxford University Press, Oxford, 1999)Google Scholar
  72. 72.
    B.N. Ames, M.K. Shigenaga, T.M. Hagen, Proc. Natl. Acad. Sci. 90, 7915 (1993)CrossRefGoogle Scholar
  73. 73.
    J.F. Turrens, J. Physiol. 552, 335 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PG Research Department of PhysicsPresidency CollegeChennaiIndia

Personalised recommendations