Advertisement

A Mechanistic Study on the Structure Formation of NiCo2O4 Nanofibers Decorated with In Situ Formed Graphene-Like Structures

  • B. Sachin Kumar
  • Visweswara C. Gudla
  • Rajan Ambat
  • Sreeram K. Kalpathy
  • S. Anandhan
Article

Abstract

Nickel cobaltite (NCO) nanofibers were synthesized using poly(styrene-co-acrylonitrile) (SAN) as the polymeric binder through sol–gel assisted electrospinning. Defect-free precursor nanofiber mats were pyrolyzed at 773 K at three different pyrolysis soaking times t = 2, 4, and 6 h. The SAN present in the precursor nanofibers caused morphological changes in the NCO nanofibers during their thermochemical degradation. Consequently, fractal aggregates of NCO nanoparticles were formed along the length of the nanofibers. X-ray photoelectron spectroscopy (XPS) revealed both + 2 and + 3 oxidation states for Ni and Co, with spinel crystal defects due to oxygen rich atmosphere. XPS, high-resolution transmission microscopy, and optical analysis showed graphene-like structures embedded within the NCO nanofibers. With increase in pyrolysis soaking time, the morphology of the NCO particles markedly changed from spherical to rod-like. We propose a mechanism for the morphological change of NCO nanoparticles on the basis of crystallite splitting accompanied by particle splitting and reordering.

Keywords

Electrospinning Inverse spinel Crystal splitting theory Kirkendall effect 

Notes

Acknowledgements

Sachin Kumar is obliged to National Institute of Technology Karnataka, India, for a research fellowship. The authors acknowledge Technical Education Quality Improvement Program (TEQIP- phase II) through which the PL spectrometer was procured and used in this study. The testing and characterization partially made use of the new faculty initiation Grant (No: MET/15-16/836/NFIG/SRER) to S. K. Kalpathy from Industrial Consultancy and Sponsored Research, I.I.T. Madras, Chennai, India.

Supplementary material

10904_2018_842_MOESM1_ESM.docx (5.3 mb)
Supplementary material 1 (DOCX 5384 KB)

References

  1. 1.
    M.N. Iliev, P. Silwal, B. Loukya, R. Datta, D.H. Kim, N.D. Todorov, N. Pachauri, A. Gupta, J. Appl. Phys. 114, 033514 (2013)CrossRefGoogle Scholar
  2. 2.
    J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E.I. Ríos, H.M. Palmer, C. Greaves, F.J. Berry, J. Mater. Chem. 11, 3087 (2001)CrossRefGoogle Scholar
  3. 3.
    J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E. Ríos, F.J. Berry, J. Solid State Chem. 153, 74 (2000)CrossRefGoogle Scholar
  4. 4.
    W. Liu, C. Lu, K. Liang, B. Kang Tay, J. Mater. Chem. A 2, 5100 (2014)CrossRefGoogle Scholar
  5. 5.
    N. Iqbal, X. Wang, A. Ahmed Babar, J. Yu, B. Ding, J. Colloid Interface Sci. 476, 87 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Chen, S.-Z. Qiao, ACS Nano 7, 10190 (2013)CrossRefGoogle Scholar
  7. 7.
    X. Tong, S. Chen, C. Guo, X. Xia, X.-Y. Guo, ACS Appl. Mater. Interfaces 8, 28274 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Hu, L. Wu, M. Liao, X. Hu, X. Fang, Adv. Funct. Mater. 22, 998 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, J. Tu, ACS Appl. Mater. Interfaces 5, 8790 (2013)CrossRefGoogle Scholar
  10. 10.
    A.N. Naveen, S. Selladurai, Electrochim. Acta 173, 290 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5, 8879 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Alcántara, M. Jaraba, P. Lavela, J.L. Tirado, Chem. Mater. 14, 2847 (2002)CrossRefGoogle Scholar
  13. 13.
    J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, ACS Appl. Mater. Interfaces 5, 981 (2013)CrossRefGoogle Scholar
  14. 14.
    M.U.A. Prathap, C. Wei, S. Sun, Z.J. Xu, Nano Res. 8, 2636 (2015)CrossRefGoogle Scholar
  15. 15.
    C.F. Windisch, G.J. Exarhos, K.F. Ferris, M.H. Engelhard, D.C. Stewart, Thin Solid Films 398, 45 (2001)CrossRefGoogle Scholar
  16. 16.
    G.A. Babu, G. Ravi, Y. Hayakawa, Appl. Phys. A 119, 219 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Zhang, B.Y. Xia, X. Wang, X.W. Lou, Adv. Mater. 26, 2408 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Zhang, L. Deng, P. Zhang, X. Ren, Y. Li, T. He, Dalton Trans. 46, 4403 (2017)CrossRefGoogle Scholar
  19. 19.
    E. Umeshbabu, G. Rajeshkhanna, G.R. Rao, Int. J. Hydrog. Energy 39, 15627 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Ding, L. Qi, H. Wang, J. Solid State Electrochem. 16, 3621 (2012)CrossRefGoogle Scholar
  21. 21.
    B. Cui, H. Lin, J.-B. Li, X. Li, J. Yang, J. Tao, Adv. Funct. Mater. 18, 1440 (2008)CrossRefGoogle Scholar
  22. 22.
    J.S. McCloy, W. Jiang, W. Bennett, M. Engelhard, J. Lindemuth, N. Parmar, G.J. Exarhos, J. Phys. Chem. C 119, 22465 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Cabo, E. Pellicer, E. Rossinyol, O. Castell, S. Suriñach, M.D. Baró, Cryst. Growth Des. 9, 4814 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Kuboon, Y.H. Hu, Ind. Eng. Chem. Res. 50, 2015 (2011)CrossRefGoogle Scholar
  25. 25.
    H. Guan, C. Shao, Y. Liu, N. Yu, X. Yang, Solid State Commun. 131, 107 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Mondal, S. Maiti, S. Mahanty, A. Baran Panda, J. Mater. Chem. A 5, 16854 (2017)CrossRefGoogle Scholar
  27. 27.
    D.U. Lee, B.J. Kim, Z. Chen, J. Mater. Chem. A 1, 4754 (2013)CrossRefGoogle Scholar
  28. 28.
    D.P. Dubal, P. Gomez-Romero, B.R. Sankapal, R. Holze, Nano Energy 11, 377 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong, M. Srinivasan, Chem. Eur. J. 19, 5892 (2013)CrossRefGoogle Scholar
  30. 30.
    G. George, S. Anandhan, J. Sol-Gel Sci. Technol. 67, 256 (2013)CrossRefGoogle Scholar
  31. 31.
    B.S. Kumar, A.M. Shanmugharaj, S.K. Kalpathy, S. Anandhan, Ceram. Int. 43, 6845 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Harilal, S.G. Krishnan, B.L. Vijayan, M. Venkatashamy Reddy, S. Adams, A.R. Barron, M.M. Yusoff, R. Jose, Mater. Des. 122, 376 (2017)CrossRefGoogle Scholar
  33. 33.
    B.S. Kumar, S.K. Kalpathy, S. Anandhan, Phys. Chem. Chem. Phys. 20, 5295 (2018)CrossRefGoogle Scholar
  34. 34.
    T. Senthil, G. George, S. Anandhan, Polym. Plast. Technol. Eng. 52, 407 (2013)CrossRefGoogle Scholar
  35. 35.
    E.M. Secula, Resistivity and Hall Measurements, (NIST, 2010). https://www.nist.gov/pml/engineering-physics-division/resistivity-and-hall-measurements. Accessed 19 July 2017
  36. 36.
    A.G. Patil, A.M. Shanmugharaj, S. Anandhan, Powder Technol. 272, 241 (2015)CrossRefGoogle Scholar
  37. 37.
    L. de Martín, A. Fabre, J.R. van Ommen, Chem. Eng. Sci. 112, 79 (2014)CrossRefGoogle Scholar
  38. 38.
    G.A. Niklasson, A. Torebring, C. Larsson, C.G. Granqvist, T. Farestam, Phys. Rev. Lett. 60, 1735 (1988)CrossRefGoogle Scholar
  39. 39.
    G. George, S. Anandhan, Mater. Sci. Semicond. Process. 32, 40 (2015)CrossRefGoogle Scholar
  40. 40.
    G. George, L. Elias, A.C. Hegde, S. Anandhan, RSC Adv. 5, 40940 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Yao, Z. Yang, H. Sun, S. Wang, Ind. Eng. Chem. Res. 51, 14958 (2012)CrossRefGoogle Scholar
  42. 42.
    X. Xia, X. Dong, Q. Wei, Y. Cai, K. Lu, Express Polym. Lett. 6, (2012)Google Scholar
  43. 43.
    S.-W. Choi, J.Y. Park, S.S. Kim, Chem. Eng. J. 172, 550 (2011)CrossRefGoogle Scholar
  44. 44.
    J.Y. Park, K. Asokan, S.-W. Choi, S.S. Kim, Sens. Actuators B 152, 254 (2011)CrossRefGoogle Scholar
  45. 45.
    J. Stráská, J. Stráský, M. Janeček, Acta Phys. Pol. A 128, (2015)Google Scholar
  46. 46.
    S. Trivedi, R. Prasad, Asia-Pac. J. Chem. Eng. 12, 440 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Zhou, F. Lu, T. Lv, X. Yang, W. Xia, X. Shen, H. He, X. Zeng, J. Phys. Appl. Phys. 48, 215305 (2015)CrossRefGoogle Scholar
  48. 48.
    J. Tang, A.P. Alivisatos, Nano Lett. 6, 2701 (2006)CrossRefGoogle Scholar
  49. 49.
    G.J. Exarhos, C.F. Windisch Jr., K.F. Ferris, R.R. Owings, Appl. Phys. A 89, 9 (2007)CrossRefGoogle Scholar
  50. 50.
    M. Li, Z. Tang, M. Leng, J. Xue, Adv. Funct. Mater. 24, 7495 (2014)CrossRefGoogle Scholar
  51. 51.
    J.L. Guimarães, M. Abbate, S.B. Betim, M.C.M. Alves, J. Alloys Compd. 352, 16 (2003)CrossRefGoogle Scholar
  52. 52.
    M. Srivastava, M.E. Uddin, J. Singh, N.H. Kim, J.H. Lee, J. Alloys Compd. 590, 266 (2014)CrossRefGoogle Scholar
  53. 53.
    C. Shen, Y. Sun, J. Wang, Y. Lu, Nanoscale 6, 9139 (2014)CrossRefGoogle Scholar
  54. 54.
    L.G. Weyer, S.-C. Lo, Handbook of Vibrational Spectroscopy. (Wiley, Chichester, 2006)Google Scholar
  55. 55.
    B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Chichester, 2004)CrossRefGoogle Scholar
  56. 56.
    B. Cui, H. Lin, Y. Liu, J. Li, P. Sun, X. Zhao, C. Liu, J. Phys. Chem. C 113, 14083 (2009)CrossRefGoogle Scholar
  57. 57.
    J. Lefebvre, J.M. Fraser, P. Finnie, Y. Homma, Phys. Rev. B 69, 075403 (2004)CrossRefGoogle Scholar
  58. 58.
    K.-Y. Lian, Y.-F. Ji, X.-F. Li, M.-X. Jin, D.-J. Ding, Y. Luo, J. Phys. Chem. C 117, 6049 (2013)CrossRefGoogle Scholar
  59. 59.
    G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, M. Chhowalla, Adv. Mater. 22, 505 (2010)CrossRefGoogle Scholar
  60. 60.
    S.Q. Chen, Y. Wang, J. Mater. Chem. 20, 9735 (2010)CrossRefGoogle Scholar
  61. 61.
    M. Silambarasan, P.S. Ramesh, D. Geetha, J. Mater. Sci. Mater. Electron. 28, 323 (2017)CrossRefGoogle Scholar
  62. 62.
    Z.-Q. Liu, K. Xiao, Q.-Z. Xu, N. Li, Y.-Z. Su, H.-J. Wang, S. Chen, RSC Adv. 3, 4372 (2013)CrossRefGoogle Scholar
  63. 63.
    A. Bailey, D.A. Cadenhead, D.H. Davies, D.H. Everett, A.J. Miles, Trans. Faraday Soc. 67, 231 (1971)CrossRefGoogle Scholar
  64. 64.
    M. Sakar, S. Balakumar, P. Saravanan, S.N. Jaisankar, Mater. Des. 94, 487 (2016)CrossRefGoogle Scholar
  65. 65.
    H.J. Fan, U. Gösele, M. Zacharias, Small 3, 1660 (2007)CrossRefGoogle Scholar
  66. 66.
    D.-H. Nam, J.-H. Lee, N.-R. Kim, Y.-Y. Lee, H.-W. Yeon, S.-Y. Lee, Y.-C. Joo, Carbon 82, 273 (2015)CrossRefGoogle Scholar
  67. 67.
    H.J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. Gösele, Nano Lett. 7, 993 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaMangaloreIndia
  2. 2.Section of Materials and Surface Technology, Department of Mechanical EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations