Advertisement

A Novel Layered Anchoring Structure Immobilized Cellulase via Covalent Binding of Cellulase on MNPs Anchored by LDHs

  • Jicong Pei
  • Yan Huang
  • Yuxiang Yang
  • Hongming Yuan
  • Xiangnong Liu
  • Chaoying Ni
Article
  • 63 Downloads

Abstract

In this study, Fe3O4 nanoparticles were first synthesized by co-precipitation method and then layered double hydroxides (LDHs) nanosheets were anchored onto Fe3O4 via an in-situ growth method to prepare LDHs@Fe3O4 carrier. The obtained magnets and LDHs@Fe3O4 carrier were characterized by XRD, FT-IR, N2 adsorption, HRSEM and HRTEM respectively. Using glutaraldehyde as a coupling agent, cellulase was immobilized onto this magnetic carrier by covalent binding. The effects of various parameters on enzyme activity of LDHs@Fe3O4 immobilized cellulase, including cellulase concentration, glutaraldehyde concentration, crosslinking time, pH, cellulase concentration, immobilization time and temperature were discussed in detailed. Moreover, thermal stability and operating stability of the immobilized cellulase were studied, the loaded amount of cellulase was measured, and the degradation performance of methoxychlor (MXC) by layered anchoring structure immobilized cellulase was evaluated.

Keywords

Layered double hydroxides Fe3O4 magnetic fluid Immobilized cellulase Layered anchoring structure 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20577010, 20971043); and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Q. Wang, D. O’Hare, Chem. Rev. 112, 4124–4155 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Mousty, V. Prévot, Anal. Bioanal. Chem. 405, 3513–3523 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Xu, M.C. Liao, H.Y. Zeng, C.R. Chen, H.Z. Duan, X.J. Liu et al., Appl. Clay Sci. 115, 124–131 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, H. Yan, T. Yang, Y. Zong, J. Environ. Manag. 92, 53 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Matsuura, Bulletin of the Chemical Society of Japan (The Chemical Society of Japan, Tokyo, 2017)Google Scholar
  6. 6.
    M. Komiyama, K. Yoshimoto, M. Sisido, K. Ariga, Bull. Chem. Soc. Jpn, 90, 967–1004 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee et al., Chem. Soc. Rev. 46, 3386 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Lawrence, P. Kalimuthu, M. Benzigar, K.J. Shelat, K.S. Lakhi, D.H. Park et al., Adv. Mater. (2017).  https://doi.org/10.1002/adma.201702295 Google Scholar
  9. 9.
    X.Z. Liu, Q. Zhang, Y.X. Liang, R.F. Zhang, Adv. Mater. Res. 1010–1012, 830–834 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Zheng, Q. Wang, Y. Jiang, J. Gao, Ind. Eng. Chem. Res. 51, 10140–10146 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Li, L. Luo, Z. Pang, L. Ding, Q. Wang, H. Ke et al., ACS Appl. Mater. Interfaces 6, 5144 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, Z. Zeng, G. Zeng, L. Tang, Y. Pang, Z. Li et al., Biores. Technol. 115, 21–26 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Huang, Y. Xi, Y. Yang, C. Chen, H. Yuan, X. Liu, Chin. Sci. Bull. 59, 509–520 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Yuxiang Yang, P. Zhao, Y. Yao, Z. Huang, H. Dai, Yuan et al., J. Nanosci. Nanotechnol. 17, 1–8 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Yang, Y. Huang, Y. Yang, H. Yuan, X. Liu, J. Environ. Sci. 38, 52–62 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Liming, S. Xueliang, Biores. Technol. 91, 259–262 (2004)CrossRefGoogle Scholar
  17. 17.
    J.A. Khan, S.K. Singh, Int. J. Plant. 1, 179–187 (2011)Google Scholar
  18. 18.
    L.I. Hui-Rong, J. Jiangsu Polytech. Univ. 69, 141–153 (2004)Google Scholar
  19. 19.
    M.M. Bradford, M. Bradford, Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  20. 20.
    L. Wu, X. Yuan, J. Sheng, J. Membr. Sci. 250, 167–173 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Yang, Q. Wei, J. Zhang, Y. Xi, H. Yuan, C. Chen et al., Biochem. Eng. J. 97, 111–118 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Zhong, Y. Liao, A. Gao, J. Hao, D. Shu, Y. Huang et al., J. Alloys Compd. 669, 146–155 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Yin, J. Li, H. Zhang, Green Chem. (2016).  https://doi.org/10.1039/c5gc00709g Google Scholar
  24. 24.
    R. Fernández-Lafuente, V. RodríGuez, C. Mateo, G. Fernández-Lorente, P. Arminsen, P. Sabuquillo et al., J. Mol. Catal. B 7, 173–179 (1999)CrossRefGoogle Scholar
  25. 25.
    K. Kang, C. Kan, A. Yeung, D. Liu, Mater. Sci. Eng. C 26, 664–669 (2006)CrossRefGoogle Scholar
  26. 26.
    X.N. Dai, W.G. Hou, H.D. Duan, P. Ni. Colloid Surf A 295, 139–145 (2007)CrossRefGoogle Scholar
  27. 27.
    N. Srivastava, M. Srivastava, P.K. Mishra, P.W. Ramteke, Front. Microbiol. 7, 514 (2016)CrossRefGoogle Scholar
  28. 28.
    O. Barbosa, R. Torres, C. Ortiz, Á BerenguerMurcia, R.C. Rodrigues, R. Fernandezlafuente, Biomacromology 14, 2433 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA
  3. 3.State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunChina
  4. 4.Analysis Test CenterYangzhou UniversityYangzhouChina

Personalised recommendations