Skip to main content
Log in

An Innovative Method for the Removal of Toxic SOx Molecules from Environment by TiO2/Stanene Nanocomposites: A First-Principles Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Based on the density functional theory calculations, we explored the sensing capabilities and electronic structures of TiO2/Stanene heterostructures as novel and highly efficient materials for detection of toxic SOx molecules in the environment. Studied gas molecules were positioned at different sites and orientations towards the nanocomposite, and the adsorption process was examined by the help of the most stable structures. We found that gas molecules are chemically adsorbed on the TiO2/Stanene heterostructures. The calculations of the adsorption energy indicate that the fivefold coordinated titanium sites of the TiO2/Stanene are the most stable sites for the adsorption of SOx molecules. Several active sites of the gas molecules were tested to be chemisorbed to the titanium atoms. The adsorption of gas molecules is an exothermic process, and this adsorption on the pristine nanocomposite is more favorable in energy than that on the nitrogen-doped nanocomposite. The effects of van der Waals interactions were taken into account, indicating the increase in the adsorption energy values for the most sable configurations. Mulliken charge analysis reveals that SOx molecules show acceptor characteristics, as evidenced by the accumulation of electronic charges on the adsorbed molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016)

    Article  CAS  Google Scholar 

  3. H. Liu, Y. Du, Y. Deng, P. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44, 637–646 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46, 2127–2157 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. A. Mannix, X. Zhou, B. Kiraly, J. Wood, D. Alducin, B. Myers, X. Liu, B. Fisher, U. Santiago, J. Guest, M. Yacaman, A. Ponce, A. Oganov, M. Hersam, N. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Jing, X. Zhang, Z. Zhou, Phosphorene: what can we know from computations? WIREs Comput Mol. Sci. 6, 5–19 (2016)

    Article  CAS  Google Scholar 

  8. Q. Tang, Z. Zhou, Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations. WIREs Comput. Mol. Sci. 5, 360–379 (2015)

    Article  CAS  Google Scholar 

  9. S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. 54, 3112–3115 (2015)

    Article  CAS  Google Scholar 

  10. V. Özçelik, O. Aktürk, E. Durgun, S. Ciraci, Prediction of a two-dimensional crystalline structure of nitrogen atoms. Phys. Rev. B 92, 125420–125427 (2015)

    Article  CAS  Google Scholar 

  11. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. Zhang, J. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S.A. Yang, Z. Zhu, Z. Chen, H. Zeng, Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett. 17, 3434–3440 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. O. Leenaerts, B. Partoens, F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416–125421 (2008)

    Article  CAS  Google Scholar 

  16. F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. L. Kou, A. Du, C. Chen, T. Frauenheim, Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 6, 5156–5161 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. F. Perkins, A. Friedman, E. Cobas, P. Campbell, G. Jernigan, B. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G. Duesberg, High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699–6702 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. A. Crowther, A. Ghassaei, N. Jung, L.E. Brus, Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6, 1865–1875 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Jing, X. Zhang, D.H. Wu, X.D. Zhao, Z.Z. Hou, High carrier mobility and pronounced light absorption in methyl-terminated germanene: insights from first-principles computations. J. Phys. Chem. Lett. 6, 4252 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. R.W. Zhang, C.W. Zhang, W.X. Ji, S.S. Li, S.J. Hu, Ethynyl-functionalized stanene film: a promising candidate as large-gap Quantum Spin Hall insulator. New J. Phys. 17, 083036 (2015)

    Article  CAS  Google Scholar 

  23. F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. M. Modarresi, A. Kakoee, Y. Mogulkoc, M.R. Roknabadi, Effect of external strain on electronic structure of stanene. Comput. Mater. Sci. 101, 164–167 (2015)

    Article  CAS  Google Scholar 

  25. S.S. Li, C.W. Zhang, Tunable electronic structures and magnetic properties in two-dimensional stanene with hydrogenation. Mater. Chem. Phys. 173, 246–254 (2016)

    Article  CAS  Google Scholar 

  26. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  Google Scholar 

  27. S. Rachel, M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene. Phys. Rev. B 89, 195303 (2014)

    Article  CAS  Google Scholar 

  28. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  CAS  PubMed  Google Scholar 

  29. M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. J. Chem. Rev. 104, 4063–4104 (2004)

    Article  CAS  Google Scholar 

  30. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. J. Chem. Rev. 95(3), 735 (1995)

    Article  CAS  Google Scholar 

  31. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water. Nature. 440(7082), 295 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. M. Fujihira, Y. Satoh, T. Osa, Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293, 206–208 (1981)

    Article  CAS  Google Scholar 

  33. G.J. Shao, Electronic structures of manganese-doped rutile TiO2 from first principles. Phys. Chem. C 112, 18677–18685 (2008)

    Article  CAS  Google Scholar 

  34. M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505–516 (2003)

    Article  CAS  Google Scholar 

  35. L.A. Errico, M. Renteria, M. Weissmann, Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2−δ. Phys. Rev. B 72, 184425 (2005)

    Article  CAS  Google Scholar 

  36. S. Sakthivel, M. Janczarek, H.J. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. Phys. Chem. B 108, 19384–19387 (2004)

    Article  CAS  Google Scholar 

  37. O. Diwald, T.L. Thompshon, T. Zubkov, E.G. Goralski, S.D. Walck, J. T. Yates, Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light. J. Phys. Chem. B 108, 6004–6008 (2004)

    Article  CAS  Google Scholar 

  38. M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 6, 865–870 (2004)

    Article  CAS  Google Scholar 

  39. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5, 7–19 (1991)

    Article  CAS  Google Scholar 

  40. G. Sberveglieri, Recent developments in semiconducting thin-film gas sensors. Sens. Actuators B 23, 103–109 (1995)

    Article  CAS  Google Scholar 

  41. A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, Solid-state gas sensors: a review. J. Electrochem. Soc. 139, 3690 – 3704 (1992)

    Article  CAS  Google Scholar 

  42. K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10, 4083–4099 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)

    Article  CAS  Google Scholar 

  44. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B 121, 18–35 (2007)

    Article  CAS  Google Scholar 

  45. R. Moos, K. Sahner, M. Fleischer, U. Guth, N. Barsan, U. Weimar, Solid state gas sensor research in Germany–a status report. Sensors 9, 4323–4365 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Batzill, Surface science studies of gas sensing materials: SnO2. Sensors 6, 1345–1366 (2006)

    Article  CAS  PubMed Central  Google Scholar 

  48. A. Abbasi, J.J. Sardroodi, Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: Insights from density functional theory calculations. Comput. Theor. Chem. 1095, 15–28 (2016)

    Article  CAS  Google Scholar 

  49. A. Abbasi, J.J. Sardroodi, N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci. Nano 3, 1153–1164 (2016)

    Article  CAS  Google Scholar 

  50. A. Abbasi, J.J. Sardroodi, A novel strategy for SOx removal by N-doped TiO2/WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT. Comput. Theor. Chem. 1114, 8–19 (2017)

    Article  CAS  Google Scholar 

  51. A. Abbasi, J.J. Sardroodi, Prediction of a highly sensitive molecule sensor for SOx detection based on TiO2/MoS2 nanocomposites: a DFT study. J. Sulfur Chem. 38(1), 52–68 (2017)

    Article  CAS  Google Scholar 

  52. A. Abbasi, J.J. Sardroodi, An innovative gas sensor system designed from a sensitive nanostructured ZnO for the selective detection of SOx molecules: a density functional theory study. New J. Chem. 41, 12569–12580 (2017)

    Article  CAS  Google Scholar 

  53. A. Abbasi, J.J. Sardroodi, Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites. J. Nanostruct. Chem. 6, 309–327 (2016)

    Article  CAS  Google Scholar 

  54. A. Abbasi, J.J. Sardroodi, Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: applications to gas sensor devices. Appl. Surf. Sci. 436, 27–41 (2018)

    Article  CAS  Google Scholar 

  55. A. Abbasi, J.J. Sardroodi, Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study. Adsorption 24, 29–41 (2018)

    Article  CAS  Google Scholar 

  56. A. Abbasi, J.J. Sardroodi, A.R. Ebrahimzadeh, M. Yaghoobi, Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors. Appl. Surf. Sci. 435, 733–742 (2018)

    Article  CAS  Google Scholar 

  57. A. Abbasi, J.J. Sardroodi, Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals corrected DFT study. J Nanostruct. Chem. 7, 345–358 (2017)

    Article  Google Scholar 

  58. A. Abbasi, J.J. Sardroodi, Density functional theory investigation of the interactions between the buckled stanene nanosheet and XO2 gases (X = N, S, C). Comput. Theor. Chem. 1125, 15–28 (2018)

    Article  CAS  Google Scholar 

  59. Z. Li, D. Ding, Q. Liu, C. Ning, X. Wang, Ni-doped TiO2 nanotubes for wide-range hydrogen sensing. Nanoscale Res. Lett. 9, 1–9 (2014)

    Article  CAS  Google Scholar 

  60. X. Zou et al., Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 13, 3287–3292 (2013)

    Article  CAS  PubMed  Google Scholar 

  61. G. Chen et al., High-energy faceted SnO2-coated TiO2 nan-belt heterostructure for near-ambient temperature-responsive ethanol sensor. ACS Appl. Mater. Interfaces 7, 24950–24956 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, Influence of silica ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction. J. Mater. Sci.: Mater. Electron. 28, 12977–12983 (2017)

    CAS  Google Scholar 

  63. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  64. W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  Google Scholar 

  65. The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site http://www.openmxsquare.org

  66. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)

    Article  CAS  Google Scholar 

  67. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  69. M. Modarresi, A. Kakoee, Y. Mogulkoc, M. Roknabadi, Effect of external strain on electronic structure of stanene. Comput. Mater. Sci. 101, 164–167 (2015)

    Article  CAS  Google Scholar 

  70. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. The data available at. http://rruff.geo.arizona.edu/AMS/amcsd.php.

  72. R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience Publishers, New York, 1963)

    Google Scholar 

  73. Y. Lei, H. Liu, W. Xiao, First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell. Modell. Simul. Mater. Sci. Eng. 18, 025004 (2010)

    Article  CAS  Google Scholar 

  74. J. Liu, Q. Liu, P. Fang, C. Pan, W. Xiao, First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. J. Appl. Surf. Sci. 258, 8312–8318 (2012)

    Article  CAS  Google Scholar 

  75. M.D. Piane, M. Corno, P. Ugliengo, Does dispersion dominate over H-Bonds in drug–surface interactions? The case of silica-based materials as excipients and drug-delivery agents. J. Chem. Theor. Comput. 9(5), 2404–2415 (2013)

    Article  CAS  Google Scholar 

  76. M.D. Piane, S. Vaccari, M. Corno, P. Ugliengo, Silica-based materials as drug adsorbents: first principle investigation on the role of water microsolvation on ibuprofen adsorption. J. Phys. Chem. A 118(31), 5801–5807 (2014)

    Article  CAS  Google Scholar 

  77. N. Tasinato, D. Moro, P. Stoppa, C.A. Pietropolli, P. Toninello, S. Giorgianni, Adsorption of F2Cdbnd CFCl on TiO2 nano-powder: structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations. Appl. Surf. Sci. 353, 986–994 (2015)

    Article  CAS  Google Scholar 

  78. A. Abbasi, J.J. Sardroodi, Improving the adsorption of sulfur trioxide on TiO2 anatase nanoparticles by N-doping: a DFT study. J. Theor. Comput. Chem. 14(4), 1550025 (2015)

    Article  CAS  Google Scholar 

  79. X. Chen, C. Tan, Q. Yang, R. Meng, Q. Liang, M. Cai, S. Zhang, J. Jiang, Ab initio study of the adsorption of small molecules on stanene. J. Phys. Chem. C 120(26), 13987–13994 (2016)

    Article  CAS  Google Scholar 

  80. P. Garg, I. Choudhuri, B. Pathak, Stanene based gas sensors: effect of spin–orbit coupling. Phys. Chem. Chem. Phys. 19, 31325–31334 (2017)

    Article  CAS  PubMed  Google Scholar 

  81. J. Prasongkit, R.G. Amorim, S. Chakraborty, R. Ahuja, R.H. Scheicher, V. Amornkitbamrung, Highly sensitive and selective gas detection based on silicene. J. Phys. Chem. C 119, 16934–16940. (2015)

    Article  CAS  Google Scholar 

  82. Z. Lou et al., A class of hierarchical nanostructures: ZnO surface functionalized TiO2 with enhanced sensing properties. RSC Adv. 3, 3131–3136 (2013)

    Article  CAS  Google Scholar 

  83. C.L. Zhu et al., Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces 4, 665–671 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Azarbaijan Shahid Madani University (Grant No: 96/235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirali Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Sardroodi, J.J. An Innovative Method for the Removal of Toxic SOx Molecules from Environment by TiO2/Stanene Nanocomposites: A First-Principles Study. J Inorg Organomet Polym 28, 1901–1913 (2018). https://doi.org/10.1007/s10904-018-0832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0832-9

Keywords

Navigation