Skip to main content
Log in

Influence of Magnetic Nanoparticles on Surface Changes in CoFe2O4/Nerium Oleander Leaf Waste Activated Carbon Nanocomposite for Water Treatment

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The paper reports on the successful use of the nano crystalline cobalt ferrite doped Nerium oleander leaf waste activated carbon (CoFe2O4/NOAC) synthesized by an urea assisted auto combustion technique to assess accurate kinetics and equilibrium parameters regarding the investigation of adsorption. The specific features of nano composite were investigated by various analytical techniques such as Scanning electron microscope with EDAX, powder X-ray diffraction study, BET surface area analysis, TG and DSC, Vibrating Sample Magnetometer. The BET analysis indicates that CoFe2O4 nano particles embedded in NOAC have increased the pore diameter for better adsorption. TG and DSC show the thermal stability of composite. The VSM study shows the Ferro magnetic behavior of nano composite which revealed that CoFe2O4/NOAC could be separated and retrieved easily by an external magnet after adsorption of AV49. The efficiency of adsorption of AV49 from aqueous solution was investigated through a series of batch experiments by using CoFe2O4/NOAC. The batch adsorption experiments showed the efficient removal on CoFe2O4/NOAC under optimum conditions such as pH 6.5, contact time-55 min and adsorbent dosage-50 mg. Adsorption kinetics—Pseudo first order and second order, Isotherms—Langmuir and Freundlich have been adapted to analyze the adsorption capacity. The results showed that the adsorption followed the pseudo second order kinetics and Langmuir isotherm equation is the best to describe the adsorption process. According to the thermodynamic study, it was very effective at higher temperatures also. The thermodynamic parameters ∆Go, ∆Ho and ∆So were also evaluated for this adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Regti, M.R. Laamari, S.-E. Stiriba, M.E. Haddad, Removal of basic blue 41 dyes using Persea americana-activated carbon prepared by phosphoric acid action. Int. J. Ind. Chem. 8, 187–195 (2017)

    Article  CAS  Google Scholar 

  2. M.T. Sulak, H.C. Yatmaz, Removal of textile dyes from aqueous solutions with eco-friendly biosorbent. Desalination Water Treat. 37, 169–177 (2012)

    Article  CAS  Google Scholar 

  3. K. Zare, V.K. Gupta, O. Moradi, A.S.H. Makhlouf, M. Sillanpaa, M.N. Nadagouda, H. Sadegh, R. Shahryari-ghoshekandi, A. Pal, Z. Wang, I. Tyagi, M. Kazemi, A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J. Nanostruct. Chem. 5, 227–236 (2015)

    Article  CAS  Google Scholar 

  4. A.T. Ojedokun, O.S. Bello, Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl. Water Sci. 7, 1965–1977 (2017)

    Article  CAS  Google Scholar 

  5. M.N. Aydogana, N.P. Arslanb, Removal of textile dye reactive black 5 by the coldadapted, alkali- and halotolerant fungus Aspergillus flavipes MA-25 under non-sterile conditions. Desalination Water Treat 56, 1–9 (2015)

    Article  CAS  Google Scholar 

  6. A. Wasti, M.A. Awan, Adsorption of textile dye onto modified activated alumina. J. Assoc. Arab Iniversities Basic Appl. Sci. 20, 26–31 (2016)

    Google Scholar 

  7. G.B. Oguntimein, Biosorption of dye from textile wastewater effluent onto alkali treateddried sunflower seed hull and design of a batch adsorber. J. Environ. Chem. Eng. 3, 2647–2661 (2015)

    Article  CAS  Google Scholar 

  8. D.L. Postai, C.A. Demarchi, F. Zanatta, D.C.C. Melo, C.A. Rodigues, Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccano, a low cost adsorbent. Alexandia Eng. J. 55, 1713–1723 (2016)

    Article  Google Scholar 

  9. R. Subramanium, S.K. Ponnusamy, Novel adsorbent from agricultural waste (Cashew NUT Shell) for methylene blue dye removal: optimization by response surface methodology. Water Resour Ind. 11, 64–70 (2015)

    Article  Google Scholar 

  10. K.S. Hameed, P. Muthirulan, M.M. Sundaram, Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: equilibrium and kinetic studies. Arab. J. Chem. 10, 2225–2233 (2017)

    Article  CAS  Google Scholar 

  11. H. Tounsadiab, A. Khalidia, M. Abdennourib, N. Barkab, Potential capability of natural biosorbents: Diplotaxis harra and Glebionis coronaria L. on the removal efficiency of dyes from aqueous solutions. Desalination Water Treat 57, 16633–16642 (2016)

    Article  CAS  Google Scholar 

  12. S. Kanchi, K. Bisetty, G. Kumar, M.I. Sabela, Robust adsorption of Direct Navy Blue-106 from textile industrial effluents by bio-hydrogen fermented waste derived activated carbon: equilibrium and kinetic studies. Arab. J. Chem. 10, 3084–3096 (2017)

    Article  CAS  Google Scholar 

  13. E. Altıntıg, H. Altundag, M. Tuzen, A. Sari, Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 122, 151–163 (2017)

    Article  CAS  Google Scholar 

  14. M.A. Mekewi, A.S. Darwish, M.S. Amin, Gh Eshaq, H.S. Bourazan, Copper nano particles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egypt. J. Pet. 25, 269–279 (2016)

    Article  Google Scholar 

  15. R. Istratie, M. Stoia, C. Pacurariu, C. Locovei, Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nano composites. Arab. J. Chem. 2, 1–19 (2016)

    Google Scholar 

  16. J. Rinku, S. Shripal, P. Hemant, Removal of Malachite green dye from Aqueous solution using magnetic activated carbon. Res. J. Chem. Sci. 5, 38–43 (2015)

    CAS  Google Scholar 

  17. M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Phan, V.K. Nguyen, T.T. Trang, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 85, 1296–1276 (2011)

    Article  CAS  Google Scholar 

  18. G. Wang, Y.M.Z. Wei, M. Qi, Development of multifunctional cobalt ferrite/graphene oxide nano composites for magnetic resonance imaging and controlled drug delivery. Chem. Eng. J. 289, 150–160 (2016)

    Article  CAS  Google Scholar 

  19. W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge, X. Wang, Efficient removal of Cr(VI) by magnetically separable CoFe2O4/activated carbon composite. J. Alloys Compd. 678, 179–184 (2016)

    Article  CAS  Google Scholar 

  20. F. Mehrabi, A. Vafaei, M. Ghaedi, A.M. Ghaedi, E.A. Dil, A. Asfaram, Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: optimization and modeling. Ultrason. Sonochem. 38, 672–680 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. A. Almasian, F. Najafi, M. Mirjalili, M.P. Gashti, G.C. Fard, Zwitter ionic modification of cobalt-ferrite nano fiber for the removal of anionic and cationic dyes. J. Taiwan Inst. Chem. Eng. 67, 306–317 (2016)

    Article  CAS  Google Scholar 

  22. P. Chitra, A. Muthusamy, S. Dineshkumar, R. Jayaprakash, J. Chandrasekar, Temperature and frequency dependence on electrical properties of polyaniline/Ni(1–x)CoxFe2O4 nano composites. J. Magn. Magn. Mater. 384, 204–212 (2015)

    Article  CAS  Google Scholar 

  23. E.R. Kumar, R. Jayaprakash, T. ArunKumar, S. Kumar, Effect of reaction time on particle size and dielectric properties of manganese substituted CoFe2O4 nano particles. J. Phys. Chem. Solid 74, 110–114 (2013)

    Article  CAS  Google Scholar 

  24. T. Prakash, R. Jayaprakash, G. Neri, A comparative study of the synthesis of CdO nanoplatelets by an albumen-assisted isothermal evaporation method. J. Alloys Compd. 624, 258–265 (2015)

    Article  CAS  Google Scholar 

  25. D. Chen, Z. Zeng, Y. Zeng, F. Zhang, M. Wang, Removal of methylene blue and mechanism on magnetic γ-Fe2O3/SiO2 nano composite from aqueous solution. Water Resour. Ind. 15, 1–13 (2016)

    Article  Google Scholar 

  26. Y. Huang, W. Wang, Q. Feng, F. Dong, Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: kinetic, equilibrium and thermodynamic studies. J. Saudi Chem. Soc. 21, 58–66 (2017)

    Article  CAS  Google Scholar 

  27. S. Sheshmani, B. Falahat, F.R. Nikmaram, Preparation of magnetic graphene oxide-ferrite nanocomposites for oxidative decomposition of Remazol Black B. Int. J. Biol. Macromol. 97, 671–678 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. P. Ganesan, R. Kamaraj, G. Sozhan, S. Vasudevan, Oxidized multiwall carbon nano tubes as adsorbent for the removal of manganese from aqueous solution. Environ. Sci. Pollut. Res. 20, 987–996 (2013)

    Article  CAS  Google Scholar 

  29. R. Kamaraj, P. Ganesan, S. Vasudevan, Removal of lead from aqueous solutions by electro coagulation: isotherm, kinetics and thermodynamic studies. Int. J. Environ. Sci. Technol. 12, 683–692 (2015)

    Article  CAS  Google Scholar 

  30. S. Vasudevan, J. Lakshmi, Electrochemical removal of boron from water: adsorption and thermodynamic studies. Can. J. Chem. Eng. 90, 1017–1026 (2012)

    Article  CAS  Google Scholar 

  31. R. Kamaraj, P. Ganesan, J. Lakshmi, S. Vasudevan, Removal of copper from water by electro coagulation process—effect of alternating current (AC) and direct current (DC). Environ. Sci. Pollut. Res. 20, 399–412 (2013)

    Article  CAS  Google Scholar 

  32. N.P. Bhagya, P.A. Prashanth, R.S. Raveendra, S. Sathyanarayani, S. Ananda, B.M. Nagabhushana, H. Nagabhushana, Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nano particles: kinetic and isotherm studies. J. Asian Ceram. Soc. 4, 68–74 (2016)

    Article  Google Scholar 

  33. H.Y. Zhu, Y.Q. Fu, R. Jiang, J.H. Jiang, L. Xiao, G.M. Zeng, S.L. Zhao, Adsorption removal of congo red of magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 173, 494–502 (2011)

    Article  CAS  Google Scholar 

  34. R. Jamal, L. Zhang, M. Wang, Q. Zhao, T. Abdiryim, Synthesis of poly(3,4-propylene dioxy thiophene)/MnO2 composites and their applications in the adsorptive removal of methylene blue. Progr. Nat. Sci. 26, 32–40 (2016)

    Article  CAS  Google Scholar 

  35. M. Dargahi, H. Ghasemzadeh, A. Bakhtiary, Highly efficient absorption of cationic dyes by nano composite hydrogels based on κ-carrageenan and nano silver chloride. Carbohydr. Polym. 181, 587–595 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rathika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suba, V., Rathika, G., Ranjith Kumar, E. et al. Influence of Magnetic Nanoparticles on Surface Changes in CoFe2O4/Nerium Oleander Leaf Waste Activated Carbon Nanocomposite for Water Treatment. J Inorg Organomet Polym 28, 1706–1717 (2018). https://doi.org/10.1007/s10904-018-0831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0831-x

Keywords

Navigation