Experimental, Theoretical, Characterization and TD-DFT Analysis of a Complex [Cu(CAP)2Cl2]

  • Aycha Jellali
  • Besma Hamdi
  • Najet Salah
  • Ridha Zouari
Article
  • 29 Downloads

Abstract

The present paper work investigates a new complex bis (4-amino-2-chloropyridinium) dichlorocuprate(II) with the formula [Cu(C5H5ClN2)2Cl2] abbreviated as [Cu(CAP)2Cl2]. The sample was characterized by X-ray diffraction, Hirshfeld surface analysis, thermal analysis, FT-IR, FT-Raman and CP/MAS-NMR spectroscopy and optical properties. It was crystallized in the monoclinic system with space group P21/n. The crystal structure was stabilized by the presence of N–H⋯Cl hydrogen bond, forming a three-dimensional network. The Hirshfeld surfaces and the 2D fingerprint plots were analysed in the intermolecular interactions within the crystal network. Solid state CP/MAS-NMR spectra showed five isotropic resonances, 13C confirming the existence of five non-equivalent carbon atoms of the asymmetric unit determined by X-ray diffraction. The density functional theory using B3LYP/LanL2DZ basis sets, showed an excellent overall agreement between the calculated values and the experimental data. The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital was determined by a time-dependent DFT approach.

Keywords

Bis (4-amino-2-chloropyridinium) dichlorocuprate(II) X-ray diffraction Hirshfeld surface DFT calculations Optical properties 

Notes

Acknowledgements

The authors thank the members of units of common services, at the University of Sfax, for their assistance in the XRD analyses. The authors are also thankful to Prof. Hamadi Khemakhem for cooperating in the Raman spectroscopy measurement. Regards are also due to Kamel Maaloul, translator and English professor for the carefully proofreading and productive language polishing of the manuscript.

References

  1. 1.
    K. Karoui, A.B. Rhaiem, F. Jomni, J.L. Moneger, A. Bulou, K. Guidara, Mol. Struct. 1048, 287–294 (2013)CrossRefGoogle Scholar
  2. 2.
    K. Karoui, A.B. Rhaiem, K. Guidara, Physica B 407, 489–493 (2012)CrossRefGoogle Scholar
  3. 3.
    K.K. Bisht, A.C. Kathalikkattil, S. Eringathodi, Mol. Struct. 1013, 102–110 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Staskiewicz, O. Czupinski, Z. Czapla, Mol. Struct. 1074, 723–731 (2014)CrossRefGoogle Scholar
  5. 5.
    N. Chihaoui, B. Hamdi, T. Dammak, R. Zouari, Mol. Struct. 1123, 144–152 (2016)CrossRefGoogle Scholar
  6. 6.
    A.B. Ahmed, N. Elleuch, H. Feki, Y. Abid, C. Minot, Spectrochim. Acta A 79, 554–561 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Guidara, H. Feki, Y. Abid, Spectrochim. Acta A 115, 437–444 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Dhanalakshmi, S. Ponnusamy, C. Muthamizhchelvan, Cryst. Growth 313, 30–36 (2010)CrossRefGoogle Scholar
  9. 9.
    G.V. Rubenacker, J.E. Drumheller, Magn. Magn. Mater. 79, 119–121 (1989)CrossRefGoogle Scholar
  10. 10.
    P. Zhou, J.E. Drumheller, Appl. Phys. 67, 5755–5757 (1990)CrossRefGoogle Scholar
  11. 11.
    N. Karâa, B. Hamdi, A. Oueslati, A.B. Salah, R. Zouari, Inorg. Organomet. Polym. 20, 746–754 (2010)CrossRefGoogle Scholar
  12. 12.
    I. Baccar, F. Issaoui, F. Zouari, M. Hussein, E. Dhahri, M.A. Valente, Solid State Commun. 150, 2005–2010 (2010)CrossRefGoogle Scholar
  13. 13.
    Z. Min Min, S. Ping Ping, Acta Crystallogr. E 66, 656–661 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Walha, H. Naili, S. Yahyaoui, B.F. Ali, M.M. Turnbull, J. Superconduct. Nov. Magn. 26, 437–442 (2013)CrossRefGoogle Scholar
  15. 15.
    B.N. Salah, A. Hamdi, B. Salah, Clust. Sci. 27, 1777–1795 (2016)CrossRefGoogle Scholar
  16. 16.
    M.A. Kurawa, C.J. Adams, A.K.G. Orpen, Acta Crystallogr. E 64, 924–925 (2008)CrossRefGoogle Scholar
  17. 17.
    G.Y.S.K. Swamy, K. Ravikumar, K.V.S. Ramakrishna, Polyhedron 49 145–150 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Bhattacharya, M.S. Ray, R. Dey, L. Righi, G. Bocelli, A. Ghosh, Polyhedron 21, 2561–2651 (2002)CrossRefGoogle Scholar
  19. 19.
    G. Charlot, Chimie Analytique Quantitative, vol. 2. (Masson, Paris, 1974)Google Scholar
  20. 20.
    L.J. Farrugia, Appl. Cystallogr. 32, 837–838 (1999)CrossRefGoogle Scholar
  21. 21.
    G.M. Sheldrick, SHELXTL Version 2014/7 Google Scholar
  22. 22.
    G.M. Sheldrick, A short history of SHELX. Acta Crystallogr. A 64 112–122 (2008)CrossRefGoogle Scholar
  23. 23.
    K. Brandenburg, Diamond Version 2.0. (Impact Gbr, Bonn, 1998)Google Scholar
  24. 24.
    L.J. Farrugia, Appl. Crystallogr. 30, 565–565 (1997)CrossRefGoogle Scholar
  25. 25.
    M.A. Spackman, J.J. McKinnon, D. Jayatilaka, Cryst. Eng. Comm. 10, 377–388 (2008)Google Scholar
  26. 26.
    M.A. Spackman, D. Jayatilaka, Cryst. Eng. Comm. 11, 19–32 (2009)CrossRefGoogle Scholar
  27. 27.
    J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Chem. Comm. 37, 3814–3816 (2007)CrossRefGoogle Scholar
  28. 28.
    M.A. Spackman, J.J. McKinnon, Cryst. Eng. Comm. 4, 378–392 (2002)CrossRefGoogle Scholar
  29. 29.
    A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. Mckinnon, B. Kahr, Cryst. Growth Des. 8, 4517–4525 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Parkin, G. Barr, W. Dong, C.J. Gilmore, D. Jayatilaka, J.J. Mckinnon, M.A. Spackman, C.C. Wilson, Cryst. Eng. Comm. 9 648–652 (2007)CrossRefGoogle Scholar
  31. 31.
    F.P.A. Fabbiani, L.T. Byrne, J.J. Mckinnon, M.A. Spackman, Cryst. Eng. Comm. 9 728–731 (2007)CrossRefGoogle Scholar
  32. 32.
    J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Crystallogr. Sect. B 60, 627 (2004)CrossRefGoogle Scholar
  33. 33.
    M.A. Spackman, P.G. Byrom, Phys. Lett. 267, 215–220 (1997)Google Scholar
  34. 34.
    D. Massiot, H. Theile, A. Germany, Bruker Rep. 140, 43–46 (1994)Google Scholar
  35. 35.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, 2004Google Scholar
  36. 36.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules. (Oxford University Press, New York, 1989)Google Scholar
  37. 37.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  38. 38.
    G. Rauhut, P. Pulay, Phys. Chem. 99, 3093–3100 (1995)CrossRefGoogle Scholar
  39. 39.
    R. Dennington, T. Keith, Millam, GaussView, Version 5. (Semichem Inc., Shawnee Mission, KS, 2009)Google Scholar
  40. 40.
    L. Chen, L.K. Thompson, J.N. Bridson, J. Can. Chem. 71, 1086–1093 (1993)CrossRefGoogle Scholar
  41. 41.
    N. Karaa, B. Hamdi, A.B. Salah, R. Zouari, Mol. Struct. 1049, 48–58 (2013)CrossRefGoogle Scholar
  42. 42.
    M.K. Marchewka, A. Pietraszko, H. Feki, Y. Abid, Vib. Spectrosc. 56, 255–264 (2011)CrossRefGoogle Scholar
  43. 43.
    R.G. Chaudhary, P. Ali, N.V. Gandhare, J.A. Tanna, H.D. Juneja, Arab. J. Chem. 5, 2016 (2016)Google Scholar
  44. 44.
    R.G. Chaudhary, H.D. Juneja, M.P. Gharpure, Therm. Anal. Calorim. 112, 637–647 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Kessentini, M. Belhouchet, Y. Abid, C. Minot, T. Mhiri, Spectrochim. Acta A 122, 476–481 (2014)CrossRefGoogle Scholar
  46. 46.
    K. Azouzi, B. Hamdi, R. Zouari, A.B. Salah, Ionics 22, 1669–1680 (2016)CrossRefGoogle Scholar
  47. 47.
    R. Mesbeh, A.B. Ahmed, B. Hamdi, R. Zouari, Ionics 22, 2075–2086 (2016)CrossRefGoogle Scholar
  48. 48.
    S. Chaouachi, S. Elleuch, B. Hamdi, R. Zouari, Mol. Struct. 1125, 149–161 (2016)CrossRefGoogle Scholar
  49. 49.
    N. Karaa, B. Hamdi, A.B. Salah, R. Zouari, Mol. Struct. 1013, 168–176 (2012)CrossRefGoogle Scholar
  50. 50.
    R.M. Tovar, K.P. Johnson, K. Ashline, J.M. Seminario, Quant. Chem. 108, 1546–1554 (2008)CrossRefGoogle Scholar
  51. 51.
    M. Gaye, O. Sarr, A.S. Sall, A. Diouf, S. Hadabere, Chem. Soc. Ethiop. 11, 111–119 (1997)Google Scholar
  52. 52.
    B. Kosar, C. Albayrak, Spectrochim. Acta A 78, 160–167 (2011)CrossRefGoogle Scholar
  53. 53.
    S. Guidara, A.B. Ahmed, H. Feki, Y. Abid, Spectrochim. Acta A 127, 275–285 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aycha Jellali
    • 1
  • Besma Hamdi
    • 1
  • Najet Salah
    • 1
  • Ridha Zouari
    • 1
  1. 1.Laboratoire des Sciences des Matériaux et de l’Environnement, Faculté des Sciences de SFAXUniversity of SFAXSfaxTunisia

Personalised recommendations