Efficient Removal of Cationic and Anionic Dyes from Their Binary Mixtures by Organic–Inorganic Hybrid Material

  • Sandeep Kaushal
  • Rahul Badru
  • Sanjeev Kumar
  • Harpreet Kaur
  • Pritpal Singh


The present work reports the efficiency of a hybrid nanocomposite material towards removal of few cationic (Crystal Violet, Methylene Blue, Light Green) and anionic dyes (Neutral Red and Eriochrome Black T) as a sole or from their binary mixtures by adsorption. The nanocomposite has been obtained by dispersion of polyaniline into an inorganic matrix of zirconium(IV) phosphoborate by sol–gel method. Experiments were carried out as a function of pH of the solution, adsorbent dosage and time interval, to achieve maximum adsorption. The maximum adsorption capacity of the composite for methylene blue, crystal violet and neutral red was found to be 71.42, 89.97, 56.0 mg g−1, respectively at pH 11, and 72.70 mg g−1 for Eriochrome black T and 83.74 mg g−1 for light green at pH 3. The adsorption phenomenon has been validated by plotting Langmuir and Freundlich adsorption isotherms. The adsorption of all the selected dyes was well described by pseudo-first-order kinetics. The percentage adsorption and recovery of the dye has been found to be high enough for first three batches. As water is contaminated with a number of dyes, the sole nanocomposite capable of eliminating whole dye content, may serve as a boon for water remediation.


Nanocomposite Polyaniline Binary mixture Dyes Water remediation 



The authors gratefully acknowledge Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab (India) for support and lab facilities.

Supplementary material

10904_2018_817_MOESM1_ESM.docx (746 kb)
Supplementary material 1 (DOCX 746 KB)


  1. 1.
    Dye Manufacturing, Pollution Prevention and Abatement Handbook (World Bank Group, Washington, D.C., 1998)Google Scholar
  2. 2.
    R. Kant, Nat. Sci. 4, 22 (2012)Google Scholar
  3. 3.
    H. Gabriel, J. Hong, Res. J. Appl. Sci. 3, 216 (2008)Google Scholar
  4. 4.
    S. Arivoli, M. Thenkuzhali, E-. J. Chem. 5, 187 (2008)CrossRefGoogle Scholar
  5. 5.
    V. Zaffalon, Climate change, carbon mitigation and textiles. Textile World (2010). Accessed 12 Aug 2014
  6. 6.
    G. Zhao, L. Jiang, Y. He, J. Li, H. Dong, X. Wang, W. Hu, Adv. Mater. 23, 3959 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Kono, R. Kusumoto, J. Water Proc. Eng. 7, 83 (2015)CrossRefGoogle Scholar
  8. 8.
    B. Dash, A. Kumar, Sep. Sci. Technol. 52, 1216 (2017)CrossRefGoogle Scholar
  9. 9.
    B.D. Tony, D. Goyal, S. Khanna, Int. Biodeter. Biodegr. J. 63, 462 (2009)CrossRefGoogle Scholar
  10. 10.
    M.H. Dehghani, P. Mahdavi, Desalin. Water Treat. 54, 3464 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Tang, D. Yuan, Q. Zhang, Y. Liu, Z. Liu, H. Huang, Environ. Sci. Pollut. Res. 23, 18800 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Akbari, J.C. Remigy, P. Aptel, Carbohydr. Polym. 112, 668 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Labanda, J. Sabate, J. Llorens, J. Membr. Sci. 340, 234 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Wang, Y. Wei, RSC Adv. 7, 9079 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Safajou, H. Khojasteh, M.S. Niasari, S.M. Derazkola, J. Colloid Interface Sci. 498, 423 (2017)CrossRefGoogle Scholar
  16. 16.
    R.M. Kong, Y. Zhao, Y. Zhang, F. Qu, RSC Adv. 7, 31365 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Raghu, C.A. Basha, J. Hazard. Mater. 149, 324 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Dawood, T.K. Sen, Water Res. 46, 1933 (2012)CrossRefGoogle Scholar
  19. 19.
    P.S. Kumar, M. Palaniyappan, M. Priyadharshini, A.M. Vignesh, R. Srinath, Environ. Prog. Sustain. Energy 33, 87 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Kannan, M.M. Sundaram, Dyes Pigm. 51, 25 (2001)CrossRefGoogle Scholar
  21. 21.
    I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Chemosphere 61, 492 (2005)CrossRefGoogle Scholar
  22. 22.
    B. Ramaraju, P.M.K. Reddy, C. Subrahmanyam, Environ. Prog. Sustain. Energy 13, 1 (2013)Google Scholar
  23. 23.
    W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Carbohydr. Polym. 83, 1446 (2011)CrossRefGoogle Scholar
  24. 24.
    E.C. da Silva Filho, J.C.P. de Melo, M.G. da Fonseca, C. Airoldi, J. Colloid Interface Sci. 340, 8 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Liu, Z.Y. Gao, X.P. Su, X. Chen, L. Jiang, J.M. Yao, ACS Sustain. Chem. Eng. 3, 432 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Mathew, S. Parambadath, M.J. Barnabas, H.J. Song, J.S. Kim, S.S. Park, C.S. Ha, Dyes Pigm. 131, 177 (2016)CrossRefGoogle Scholar
  27. 27.
    M.D.A. Khan, A. Akhtar, S.A. Nabi, M.A. Khan, Ind. Eng. Chem. Res. 53, 15253 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Kaushal, R. Badru, S. Kumar, S.K. Mittal, P. Singh, RSC Adv. 6, 3150 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Duval, Inorganic Thermogravimetric Analysis, 2nd edn. (Elsevier, Amsterdam, 1963)Google Scholar
  30. 30.
    S.A. Innamuddin, A.A. Siddiqui, A.A. Khan, Talanta 71, 841 (2007)CrossRefGoogle Scholar
  31. 31.
    Y. Kobatake, N.T. Toyoshima, H. Futiza, J. Phys. Chem. 69, 3981 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Department of PhysicsSri Guru Granth Sahib World UniversityFatehgarh SahibIndia

Personalised recommendations