Skip to main content
Log in

Single Ion Conducting Blend Polymer Electrolytes Based on LiPAAOB and PPEGMA

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Single-ion polymer electrolytes are expected to play an important role in the development of next-generation lithium batteries. The current work focuses on the designing of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyacrylic acid oxalate borate (LiPAAOB) and poly(ethyleneglycol) methacrylate (PEGMA). PEGMA is polymerized into PPEGMA via free radical polymerization and LiPAAOB is prepared from poly(acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB with PPEGMA at different weight fractions to enhance the single ion conductivity of the system. To exploit the flexible chemistry and increase segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to PPEGMA. FT-IR and differential scanning calorimeter technique verifies the interaction between the host and guest polymers. Thermogravimetry analysis verified that the thermal stability of the blends increased up to approximately 200 °C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. Cyclic voltammetry studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li+. The effect of PPEGMA on to the Lithium ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10−4 S/cm at 100 °C for the sample LiPAAOB-80PPEGMA. Clearly these results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Porcarelli, K. Manojkumar, H. Sardon, O. Llorente, D. Mecerreyes, Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim. Acta. 241, 526 (2017)

    Article  CAS  Google Scholar 

  2. P.M. Blonsky, D.F. Shriver, P. Austin, H.R. Allcock, Complex formation and ionic conductivity of polyphosphazene solid electrolytes. Solid State Ionics 18, 258 (1986)

    Article  Google Scholar 

  3. L.C. Hardy, D.F. Shriver, Preparation and electrical response of solid polymer electrolytes with only one mobile species. J. Am. Chem. Soc. 107, 3823 (1985)

    Article  CAS  Google Scholar 

  4. L. Porcarelli, A.S. Shaplov, F. Bella, J.R. Nair, D. Mecerreyes, C. Gerbaldi, Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 678, 1 (2016)

    Google Scholar 

  5. S. Inceoglu, A.A. Rojas, D. Devaux, X.C. Chen, G.M. Stone, N.P. Balsara, Morphology–conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries. ACS Macro Lett. 3, 510 (2014)

    Article  CAS  Google Scholar 

  6. L. Porcarelli, A.S. Shaplov, M. Salsamendi, J.R. Nair, Y.S. Vygodskii, D. Mecerreyes, C. Gerbaldi, Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl Mater. Interfaces 8(16), 10350 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. K. Matsumoto, T. Endo, Synthesis of networked polymers by copolymerization of monoepoxy-substituted lithium sulfonylimide and diepoxy-substituted poly(ethylene glycol), and their properties. J. Polym. Sci. Part A Polym. Chem. 49, 1874 (2011)

    Article  CAS  Google Scholar 

  8. K. Matsumoto, T. Endo, Synthesis of networked polymers with lithium counter cations from a difunctional epoxide containing poly(ethylene glycol) and an epoxide monomer carrying a lithium sulfonate salt moiety. J. Polym. Sci. Part Polym. Chem. 48, 3113 (2010)

    Article  CAS  Google Scholar 

  9. R. Meziane, J.-P. Bonnet, M. Courty, K. Djellab, M. Armand, Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14 (2011)

    Article  CAS  Google Scholar 

  10. S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, Development of novel hybrid materials based on poly(2-aminophenyl disulfide)/silica gel: preparation, characterization and electrochemical studies. J. Mol. Struct. 1150, 580 (2017)

    Article  CAS  Google Scholar 

  11. A. Bekhoukh, M. Mekhloufi, R. Berenguer, A. Benyoucef, E. Morallon, PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization and electrochemical studies. Colloid Polym. Sci. 294 2, 1877 (2016)

    Google Scholar 

  12. M. Khaldi, A. Benyoucef, C. Quijada, A. Yahiaoui, E. Morallon, Synthesis, characterization and conducting properties of nanocomposites of successively intercalated 2-aminophenol with aniline in modified-montmorillonite. J. Inorg. Organomet. Polym. Mater. 24, 267 (2014)

    Article  CAS  Google Scholar 

  13. B.K. Mandal, C.J. Walsh, T. Sooksimuang, S.J. Behroozi,. S.-G. Kim, Y.-T. Kim, E.S. Smotkin, R. Filler, C. Castro, New class of single-ion-conducting solid polymer electrolytes derived from polyphenols. Chem. Mater. 12, 6 (2000)

    Article  CAS  Google Scholar 

  14. R. Rohan, Y. Sun, W. Cai, Y. Zhang, H. Cheng, Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries. Solid State Ionics 268, 294 (2014)

    Article  CAS  Google Scholar 

  15. F. Lian, H.-Y. Guan, Y. Wen, X. Pan, Polyvinyl formal based single-ion conductor membranes as polymer electrolytes for lithium ion batteries. J. Membr. Sci. 469, 67 (2014)

    Article  CAS  Google Scholar 

  16. Y. Zhang, R. Rohan, W. Cai, G. Xu, Y. Sun, A. Lin, H. Cheng, Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 17534 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. K. Sinha, W. Wang, K.I. Winey, J.K. Maranas, Dynamic patterning in PEO-based single ion conductors for Li ion batteries. Macromolecules 45, 4354 (2012)

    Article  CAS  Google Scholar 

  18. Y.S. Zhu, X.W. Gao, X.J. Wang, Y.Y. Hou, L.L. Liu, Y. P. Wu, A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochem. Commun. 22, 29 (2012)

    Article  CAS  Google Scholar 

  19. S. Guhathakurta, K. Min, Lithium sulfonate promoted compatibilization in single ion conducting solid polymer electrolytes based on lithium salt of sulfonated polysulfone and polyether epoxy. Polymer 51, 211 (2010)

    Article  CAS  Google Scholar 

  20. U.H. Choi, S. Liang, M.V. O’Reilly, K.I. Winey, J. Runt, R.H. Colby, Influence of solvating plasticizer on ion conduction of polysiloxane single-ion conductors. Macromolecules 47, 3145 (2014)

    Article  CAS  Google Scholar 

  21. Y.S. Zhu, X.J. Wang, Y.Y. Hou, X.W. Gao, L.L. Liu, Y.P. Wu et al., A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim. Acta 87, 113 (2013)

    Article  CAS  Google Scholar 

  22. M. Kurian, M.E. Galvin, P.E. Trapa, D.R. Sadoway, A. Mayes, M. Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications. Electrochim. Acta 50, 2125 (2005)

    Article  CAS  Google Scholar 

  23. M. Watanabe, N. Ogata, Ionic conductivity of polymer electrolytes and future applications. Br. Polym. J. 20, 181 (1988). https://doi.org/10.1002/pi.4980200304

    Article  CAS  Google Scholar 

  24. J.-F.L. Nest, A. Gandini, H. Cheradame, Crosslinked polyethers as media for ionic conduction. Br. Polym. J. 20, 253 (1988). https://doi.org/10.1002/pi.4980200317

    Article  Google Scholar 

  25. M. Kurian, M.E. Galvin, P.E. Trapa, D.R. Sadoway, A.M. Mayes, Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications. Electrochim. Acta 50, 2125 (2005)

    Article  CAS  Google Scholar 

  26. T.-C. Wen, Y.-J. Wang, T.-T. Cheng, C.-H. Yang, The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes. Polymer 40, 3979 (1999)

    Article  CAS  Google Scholar 

  27. M.C.I.M. Amin, N. Ahmad, N. Halib, I. Ahmad, Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohyd. Polym. 88, 465 (2012)

    Article  CAS  Google Scholar 

  28. S. Çelik, A. Bozkurt, Sol–gel synthesis of proton conductive tetrazole functional silane networks. Solid State Ionics 199, 1 (2011)

    Article  CAS  Google Scholar 

  29. I. Gustian, S. Çelik, W. Suratno, A. Bozkurt, Proton conducting composite membranes based on poly (1-vinyl-1,2,4-triazole) and nitrilotri(methyl triphosphonic acid). J. Phys. Chem. Solids 72, 1377 (2011)

    Article  CAS  Google Scholar 

  30. A. Bozkurt, T. Pakula, Dielectric and dynamic mechanical relaxations in polymer heterocycle hybrid materials. Chem. Phys. Lett. 422(4), 496 (2006)

    Article  CAS  Google Scholar 

  31. D.P. Nava, G. Guzmán, J. Vazquez-Arenas, J. Cardoso, B. Gomez, I. Gonzalez, An experimental and theoretical correlation to account for the effect of LiPF6 concentration on the ionic conductivity of poly(poly (ethyleneglycol) methacrylate). Solid State Ionics 290, 98 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, A.Z., Çelik, S.Ü. & Bozkurt, A. Single Ion Conducting Blend Polymer Electrolytes Based on LiPAAOB and PPEGMA. J Inorg Organomet Polym 28, 1616–1623 (2018). https://doi.org/10.1007/s10904-018-0805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0805-z

Keywords

Navigation