Optical Absorption and EPR Studies on Gamma-Ray Irradiated RE3+-Doped Fluorophosphate Glasses

  • K. Linganna
  • S. Ju
  • Ch. Basavapoornima
  • C. K. Jayasankar
  • V. Venkatramu
  • C. J. Kim
  • W.-T. Han


We have studied the effect of γ-ray irradiation on optical absorption, emission and decay characteristics of RE3+ (RE = Sm, Eu and Dy)-doped fluorophosphate glasses. Electron paramagnetic resonance (EPR) study confirms the POHC and PO3 EC defects induced in glasses by the γ-irradiation. The presence of induced defect centers significantly affects the optical and emission properties. The optical band gap values of the studied systems increased after the γ-ray irradiation. The phonon energy and electron–phonon coupling strength of Eu3+-doped fluorophosphate glass were determined from the phonon sideband analysis. The emission intensity of the RE3+ ions increased significantly after the γ-ray irradiation. The intensity parameter, R is the ratio of the intensities of the 5D07F2/5D07F1 transitions of Eu3+ ion and Y/B intensity parameter is the ratio of intensities of the 4F9/26H13∕2/4F9/26H15/2 transitions of Dy3+ ion reveal that the local environment around the RE3+ ion changed after the γ-ray irradiation in the present system. The lifetime of excited states of RE3+ ions decreased after the γ-ray irradiation due to the formation of defects induced by the γ-ray irradiation. The CIE color coordinates were determined before and after the γ-ray irradiation for the Dy3+-doped glass system.


Fluorophosphate glasses Gamma-ray irradiation Optical absorption and EPR spectroscopy 



This work was partially supported by the New Growth Engine Industry Project of the Ministry of Trade, Industry and Energy, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2063250), and KEPCO Research Institute (KEPRI) and managed by KESRI (Project Number: KEPRI-16-23), South Korea. Dr. Ch. Basavapoornima is thankful to University Grants Commission, New Delhi, for the award of Post-Doctoral Fellowship for Women for the year of 2011–12 (F.15-1/2011–12/PDFWM-2011–12-OB-AND-9964 (SA-II), dt. 1-11-2013).


  1. 1.
    S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, S. Kasap, Opt. Mater. Express 4, 1244–1256 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Fan, C. Yu, D. He, X. Xang, L. Hu, Opt. Mater. Express 2, 765–770 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Qi, Y. Huang, T. Tsuboi, W. Huang, H.J. Seo, Opt. Mater. Express 4(2), 396–402 (2014)CrossRefGoogle Scholar
  4. 4.
    M.A. Marzouk, Y.M. Hamdy, H.A. ElBatal, F.E. ElDin, J. Lumin. 166, 295–303 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Ehrt, Structure and properties of fluoride phosphate glasses. SPIE 1761, 213 (1992)Google Scholar
  6. 6.
    D.L. Griscom, E.J. Friebele, K.J. Long, J.W. Fleming, J. Appl. Phys. 54, 3743–3762 (1983)CrossRefGoogle Scholar
  7. 7.
    P. Ebeling, D. Ehrt, M. Friedrich, Glass Sci. Technol. 73, 156–162 (2000)Google Scholar
  8. 8.
    N.A. El-Alaily, R.M. Mohamed, Mater. Sci. Eng. B. 98, 193–203 (2003)CrossRefGoogle Scholar
  9. 9.
    V.N. Rai, B.N. Raja Sekhar, S. Kher, S.K. Deb, J. Lumin. 130, 582–586 (2010)CrossRefGoogle Scholar
  10. 10.
    V. Pukhkaya, F. Trompier, N. Ollier, J. Appl. Phys. 116 123517 (2014)CrossRefGoogle Scholar
  11. 11.
    R.X. Xing, Y.B. Sheng, Z.J. Liu, H.Q. Li, Z.W. Jiang, J.G. Peng, L.Y. Yang, J.Y. Li, N.L. Dai, Opt. Mater. Express 2, 1329–1335 (2012)CrossRefGoogle Scholar
  12. 12.
    M.A. Marzouk, J. Mol. Struct. 1019, 80–90 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Hari Babu, V.V. Ravi Kanth Kumar, J. Lumin. 169, 16–23 (2016)CrossRefGoogle Scholar
  14. 14.
    F.H. ElBatal, S. Ibrahim, A.M. Abdelghany, J. Mol. Struct. 1030, 107–112 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Sharma, R. Bagga, A. Cemmi, M. Falconieri, S. Baccaro, Rad. Phys. Chem. 108, 48–53 (2015)CrossRefGoogle Scholar
  16. 16.
    M.J. Weber, J. Non-Cryst. Solids. 123, 208–222 (1990)CrossRefGoogle Scholar
  17. 17.
    D. Ehrt, M. Carl, T. Kittel, M. Müller, W. Seeber, J. Non-Cryst. Solids. 177, 405–419 (1994)CrossRefGoogle Scholar
  18. 18.
    D. Ehrt, W. Vogel, Nucl. Instr. Meth. Res. B 65, 1–8 (1995)CrossRefGoogle Scholar
  19. 19.
    H. Ebendorff-Heidepriem, D. Ehrt, J. Non-Cryst. Solids. 196, 113–117 (1996)CrossRefGoogle Scholar
  20. 20.
    D. Ehrt, P. Ebeling, U. Natura, J. Non-Cryst. Solids. 263, 264, 240–250 (2000)CrossRefGoogle Scholar
  21. 21.
    G. Blasse, B.C. Grabmeier, Luminescent Materials. (Springer Heidelberg, New York, 1994)CrossRefGoogle Scholar
  22. 22.
    E. Malchukova, B. Boizot, D. Ghaleb, G. Petite, Nucl. Instr. Meth. Res. A. 537, 411–414 (2005)CrossRefGoogle Scholar
  23. 23.
    E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, J. Non-Cryst. Solids. 353, 2397–2402 (2007)CrossRefGoogle Scholar
  24. 24.
    D. Möncke, D. Ehrt, Glass Sci. Technol. 74, 65–73 (2001)Google Scholar
  25. 25.
    P. Ebeling, D. Ehrt, M. Friedrich, Phosphorus Res. Bull. 10, 484–489 (1999)CrossRefGoogle Scholar
  26. 26.
    J. Tauc, Amorphous and Liquid Semiconductors, First Edition. (Plenum, London, 1974)CrossRefGoogle Scholar
  27. 27.
    C.R. Kesavulu, C.K. Jayasankar, J. Lumin. 132, 2802–2809 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Sakida, S. Hayakawa, T. Yoko, J. Am. Ceram. Soc. 84, 836–842 (2001)CrossRefGoogle Scholar
  29. 29.
    M.A. Hassan, C.A. Hogarth, J. Mater. Sci. 23, 2500–2504 (1988)CrossRefGoogle Scholar
  30. 30.
    M. Dejneka, E. Snitzer, R.E. Riman, J. Lumin. 65, 227–245 (1995)CrossRefGoogle Scholar
  31. 31.
    J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem. 179, 266–269 (2006)CrossRefGoogle Scholar
  32. 32.
    E. Nakazawa, Fundamentals of luminescence, in Editors Phosphor Handbook, ed. by S. Shionoya, W. M. Yen (CRC Press, Boca Raton, FL, 1999)Google Scholar
  33. 33.
    B. Liu, C. Shi, Z. Qi, Appl. Phys. Lett. 86, 191111 (2005)CrossRefGoogle Scholar
  34. 34.
    V. Lavin, F. Lahoz, I.R. Martin, U.R. Rodríguez-Mendoza, in Photonic Glasses, ed. by R. Balda ed. (Research Signpost, Trivandrum, 2006), pp. 115–149Google Scholar
  35. 35.
    P. Babu, K.H. Jang, E.S. Kim, L. Shi, H.J. Seo, F. Rivera-López, U.R. Rodríguez-Mendoza, V. Lavín, R. Vijaya, C.K. Jayasankar, L. Rama Moorthy, J. Appl. Phys. 105, 013516 (2009)CrossRefGoogle Scholar
  36. 36.
    K. Linganna, Ch.S. Rao, C.K. Jayasankar, J. Quant. Spectr. Radiat. Transfer. 118, 40–48 (2013)CrossRefGoogle Scholar
  37. 37.
    W.J. Chung, J. Heo, Appl. Phys. Lett. 79, 326 (2001)CrossRefGoogle Scholar
  38. 38.
    Z. Xia, Y. Luo, M. Guan, L. Liao, Opt. Express 20, A722 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Linganna
    • 1
  • S. Ju
    • 1
  • Ch. Basavapoornima
    • 2
  • C. K. Jayasankar
    • 2
  • V. Venkatramu
    • 3
  • C. J. Kim
    • 4
  • W.-T. Han
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  2. 2.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  3. 3.Department of PhysicsYogi Vemana UniversityKadapaIndia
  4. 4.Research Institute of Green Energy Convergence TechnologyGyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations