Skip to main content
Log in

The Effects of Zn Doping on the Interaction of a Single Walled Carbon Nanotube with Penicillamine Drug: A DFT Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

At the present work, we report the interaction of the penicillamine (PCA) molecule adsorbed on the pure and Zn-doped single-walled carbon nanotubes (SWCNTs) using density functional theory calculations. We conclude that the interaction of PCA on the outer surface of Zn-doped SWCNT is due to chemisorption, while its interaction with the pure SWCNT is physisorption in nature. It is undrestood that the electronic and optical structure of the Zn-doped SWCNT is more sensitive to the presence of PCA in comparison with the pure SWCNT. The Mulliken population charge analysis and the density of states analyses represent that the nature of PCA adsorption on the applied Zn-doped SWCNT is electrostatic rather than covalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  2. M. Kia, M. Golzar, K. Mahjoub, A. Soltani, A first-principles study of functionalized clusters and carbon nanotubes or fullerenes with 5-aminolevulinic acid as vehicles for drug delivery. Superlattices Microstruct. 62, 251–259 (2013)

    Article  CAS  Google Scholar 

  3. Y.-H. Li, T.-H. Hung, C.-W. Chen, A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes. Carbon 47 (2009) 850

    Article  CAS  Google Scholar 

  4. N. Saikia, R.C. Deka, Theoretical study on pyrazinamide adsorption onto covalently functionalized (5, 5) metallic single-walled carbon nanotube. Chem. Phys. Lett. 500 65 (2010)

    Article  CAS  Google Scholar 

  5. R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838 (2001)

    Article  CAS  Google Scholar 

  6. D. Vardanega, F. Picaud, C. Girardet, Chiral response of single walled carbon nanotube based sensors to adsorption of amino acids: a theoretical model. J. Chem. Phys. 127 194702 (2007)

    Article  CAS  Google Scholar 

  7. N.W.S. Kam, Z. Liu, H. Dai, Angew carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Chem. Int. Ed. 44, 1 (2005)

    Article  Google Scholar 

  8. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  CAS  Google Scholar 

  9. A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  10. M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. 4, 183–200 (2008)

    Article  CAS  Google Scholar 

  11. M. Bastos, I. Camps, Interactions of lead with carboxyl and hydroxyl-decorated (10, 0) single-walled carbon nanotubes: first-principle calculations. Appl. Surf. Sci. 285 198–204 (2013)

    Article  CAS  Google Scholar 

  12. I.M.L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt, T.P. Martin, First principles calculations of Si doped fullerenes: structural and electronic localization properties in C 59 Si and C 58 Si 2. Comput. Mater. Chem. 17, 191–195 (2000)

    CAS  Google Scholar 

  13. G. Lu, K. Deng, H. Wu, J. Yang, X. Wang, J. Chem. Phys. 124, 054305–054309 (2006)

    Article  Google Scholar 

  14. W.Q. Tian, L.V. Liu, Y.A. Wang, Electronic properties and reactivity of Pt-doped carbon nanotubes. Phys. Chem. Chem. Phys. 8, 3528–3539 (2006)

    Article  CAS  Google Scholar 

  15. C.S. Yeung, L.V. Liu, Y.A. Wang, Adsorption of small gas molecules onto Pt-doped single-walled carbon nanotubes. J. Phys. Chem. C. 112, 7401–7411 (2008)

    Article  CAS  Google Scholar 

  16. C.K. Yang, J. Zhao, J.P. Lu, Complete spin polarization for a carbon nanotube with an adsorbed atomic transition-metal chain. Nano Lett. 4, 561–563 (2004)

    Article  Google Scholar 

  17. S. Niaz, H. Abbasian, M. Ahmad Badar, M. Anwar-ul-Haq, A. Karayel, Mol. Phys. 115, 2515–2520 (2017)

    Article  CAS  Google Scholar 

  18. V.A. Basiuk, L. Verónica Henao-Holguína, E. Álvarez-Zauco, M. Bassiouka, E.V. Basiuk, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Appl. Surf. Sci. 270, 634–647 (2013)

    Article  CAS  Google Scholar 

  19. A. Galano, M. Francisco-Marquez, Reactivity of silicon and germanium doped CNTs toward aromatic sulfur compounds: a theoretical approach. Chem. Phys. 345, 87–94 (2008)

    Article  CAS  Google Scholar 

  20. J. Anversa, P. Piquini, The effects of an explicit water environment on the interaction of a single wall carbon nanotube with amino acids: a theoretical study. Chem. Phys. Lett. 518, 81–86 (2011)

    Article  CAS  Google Scholar 

  21. N. Saikia, R.C. Deka, Density functional study on the adsorption of the drug isoniazid onto pristine and B-doped single wall carbon nanotubes. J. Mol. Model. 19, 215–226 (2013)

    Article  CAS  Google Scholar 

  22. M. Sabet, M.D. Ganji, Simulations on the possibility of formation of complexes between fluorouracil drug and cucurbit[n]urils: ab initio van der Waals DFT study. J. Mol. Model. 19(9), 4013–4023 (2013)

    Article  CAS  Google Scholar 

  23. J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Diam. Relat. Mater. 71, 79–84 (2017)

    Article  CAS  Google Scholar 

  24. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  26. J.P. Perdew, in Simulations on the Possibility of Formation of Complexes Between Fluorouracil Drug and Cucurbit [n] Urils: ab Initio Van Der Waals DFT Study, ed. by P. Ziesche, H. Eschrig. Electronic Structure of Solids’91. (Akademie Verlag, Berlin, 1991)

    Google Scholar 

  27. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  28. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman et al., Gaussian 03, Revision D. 01. (Gaussian Inc, Wallingford, 2004)

    Google Scholar 

  29. A. Soltani, M.B. Javan, M.S. Hoseininezhad-Namin, N. Tajabord, E.T. Lemeski, F. Pourarian, Interaction of hydrogen with Pd- and co-decorated C24 fullerenes: density functional theory study. Synth. Met. 234, 1–8 (2017)

    Article  CAS  Google Scholar 

  30. P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 299 (1985)

    Article  CAS  Google Scholar 

  31. Y.K. Chen, L.V. Liu, W.Q. Tian, Y.A. Wang, Theoretical studies of transition-metal-doped single-walled carbon nanotubes. J. Phys. Chem. C. 115, 9306–9311 (2011)

    Article  CAS  Google Scholar 

  32. A. Khorsand, S. Jamehbozorgi, R. Ghiasi, M. Rezvani, Structural, energetic and electrical properties of encapsulation of penicillamine drug into the CNTs based on vdW-DF perspective. Physica E 72, 120–127 (2015)

    Article  CAS  Google Scholar 

  33. G.S.M. Costa, P.P. Corbi, C. Abbehausen, A.L.B. Formiga, W.R. Lustri, A. Cuin, Silver (I) and gold (I) complexes with penicillamine: synthesis, spectroscopic characterization and biological studies. Polyhedron 34, 210–214 (2012)

    Article  CAS  Google Scholar 

  34. D. Sharmaa, N. Jaggi, Vibrational spectra and phonon dispersion analysis of a single-walled zigzag carbon nanotube: a first principles study. Can. J. Phys. 94(10), 1112–1118 (2016)

    Article  Google Scholar 

  35. D. Sharmaa, N. Jaggi, Two-gap superconductivity in niobium carbide-coated single-walled carbon nanotubes: a first-principles study. J Supercond Nov Magn. 30, 371–377 (2017)

    Article  Google Scholar 

  36. D. Sharmaa, N. Jaggi, Static refractive index engineering of a singlewalled carbon nanotube through co-doping: a theoretical study. Optik 131, 267–272 (2017)

    Article  Google Scholar 

  37. D. Sharmaa, N. Jaggi, Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: a first principles study. Physica E 91, 93–100 (2017)

    Article  Google Scholar 

  38. M.B. Javan, A. Soltani, E.T. Lemeski, A. Ahmadi, S.M. Rad, Interaction of B12N12 nano-cage with cysteine through various functionalities: a DFT study. Superlattices Microstruct. 100, 24–37 (2016)

    Article  Google Scholar 

  39. A. Soltani, Z. Azmoodeh, M.B. Javand, E.T. Lemeskie, L. Karami, A DFT study of adsorption of glycine onto the surface of BC2N nanotube. Appl. Surf. Sci. 384, 230–236 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Sadat Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashhadban, F., Ghasemi, A.S. & Ravari, F. The Effects of Zn Doping on the Interaction of a Single Walled Carbon Nanotube with Penicillamine Drug: A DFT Study. J Inorg Organomet Polym 28, 954–961 (2018). https://doi.org/10.1007/s10904-018-0795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0795-x

Keywords

Navigation