The Effects of Zn Doping on the Interaction of a Single Walled Carbon Nanotube with Penicillamine Drug: A DFT Study

  • Farideh Mashhadban
  • Ashraf Sadat Ghasemi
  • Fatemeh Ravari


At the present work, we report the interaction of the penicillamine (PCA) molecule adsorbed on the pure and Zn-doped single-walled carbon nanotubes (SWCNTs) using density functional theory calculations. We conclude that the interaction of PCA on the outer surface of Zn-doped SWCNT is due to chemisorption, while its interaction with the pure SWCNT is physisorption in nature. It is undrestood that the electronic and optical structure of the Zn-doped SWCNT is more sensitive to the presence of PCA in comparison with the pure SWCNT. The Mulliken population charge analysis and the density of states analyses represent that the nature of PCA adsorption on the applied Zn-doped SWCNT is electrostatic rather than covalent.


Penicillamine SWCNT Doping Adsorption Optical property 


  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  2. 2.
    M. Kia, M. Golzar, K. Mahjoub, A. Soltani, A first-principles study of functionalized clusters and carbon nanotubes or fullerenes with 5-aminolevulinic acid as vehicles for drug delivery. Superlattices Microstruct. 62, 251–259 (2013)CrossRefGoogle Scholar
  3. 3.
    Y.-H. Li, T.-H. Hung, C.-W. Chen, A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes. Carbon 47 (2009) 850CrossRefGoogle Scholar
  4. 4.
    N. Saikia, R.C. Deka, Theoretical study on pyrazinamide adsorption onto covalently functionalized (5, 5) metallic single-walled carbon nanotube. Chem. Phys. Lett. 500 65 (2010)CrossRefGoogle Scholar
  5. 5.
    R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838 (2001)CrossRefGoogle Scholar
  6. 6.
    D. Vardanega, F. Picaud, C. Girardet, Chiral response of single walled carbon nanotube based sensors to adsorption of amino acids: a theoretical model. J. Chem. Phys. 127 194702 (2007)CrossRefGoogle Scholar
  7. 7.
    N.W.S. Kam, Z. Liu, H. Dai, Angew carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Chem. Int. Ed. 44, 1 (2005)CrossRefGoogle Scholar
  8. 8.
    D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRefGoogle Scholar
  9. 9.
    A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)CrossRefGoogle Scholar
  10. 10.
    M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. 4, 183–200 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Bastos, I. Camps, Interactions of lead with carboxyl and hydroxyl-decorated (10, 0) single-walled carbon nanotubes: first-principle calculations. Appl. Surf. Sci. 285 198–204 (2013)CrossRefGoogle Scholar
  12. 12.
    I.M.L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt, T.P. Martin, First principles calculations of Si doped fullerenes: structural and electronic localization properties in C 59 Si and C 58 Si 2. Comput. Mater. Chem. 17, 191–195 (2000)Google Scholar
  13. 13.
    G. Lu, K. Deng, H. Wu, J. Yang, X. Wang, J. Chem. Phys. 124, 054305–054309 (2006)CrossRefGoogle Scholar
  14. 14.
    W.Q. Tian, L.V. Liu, Y.A. Wang, Electronic properties and reactivity of Pt-doped carbon nanotubes. Phys. Chem. Chem. Phys. 8, 3528–3539 (2006)CrossRefGoogle Scholar
  15. 15.
    C.S. Yeung, L.V. Liu, Y.A. Wang, Adsorption of small gas molecules onto Pt-doped single-walled carbon nanotubes. J. Phys. Chem. C. 112, 7401–7411 (2008)CrossRefGoogle Scholar
  16. 16.
    C.K. Yang, J. Zhao, J.P. Lu, Complete spin polarization for a carbon nanotube with an adsorbed atomic transition-metal chain. Nano Lett. 4, 561–563 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Niaz, H. Abbasian, M. Ahmad Badar, M. Anwar-ul-Haq, A. Karayel, Mol. Phys. 115, 2515–2520 (2017)CrossRefGoogle Scholar
  18. 18.
    V.A. Basiuk, L. Verónica Henao-Holguína, E. Álvarez-Zauco, M. Bassiouka, E.V. Basiuk, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Appl. Surf. Sci. 270, 634–647 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Galano, M. Francisco-Marquez, Reactivity of silicon and germanium doped CNTs toward aromatic sulfur compounds: a theoretical approach. Chem. Phys. 345, 87–94 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Anversa, P. Piquini, The effects of an explicit water environment on the interaction of a single wall carbon nanotube with amino acids: a theoretical study. Chem. Phys. Lett. 518, 81–86 (2011)CrossRefGoogle Scholar
  21. 21.
    N. Saikia, R.C. Deka, Density functional study on the adsorption of the drug isoniazid onto pristine and B-doped single wall carbon nanotubes. J. Mol. Model. 19, 215–226 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Sabet, M.D. Ganji, Simulations on the possibility of formation of complexes between fluorouracil drug and cucurbit[n]urils: ab initio van der Waals DFT study. J. Mol. Model. 19(9), 4013–4023 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Diam. Relat. Mater. 71, 79–84 (2017)CrossRefGoogle Scholar
  24. 24.
    A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  25. 25.
    C. Lee, W. Yang, R.G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, in Simulations on the Possibility of Formation of Complexes Between Fluorouracil Drug and Cucurbit [n] Urils: ab Initio Van Der Waals DFT Study, ed. by P. Ziesche, H. Eschrig. Electronic Structure of Solids’91. (Akademie Verlag, Berlin, 1991)Google Scholar
  27. 27.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)CrossRefGoogle Scholar
  28. 28.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman et al., Gaussian 03, Revision D. 01. (Gaussian Inc, Wallingford, 2004)Google Scholar
  29. 29.
    A. Soltani, M.B. Javan, M.S. Hoseininezhad-Namin, N. Tajabord, E.T. Lemeski, F. Pourarian, Interaction of hydrogen with Pd- and co-decorated C24 fullerenes: density functional theory study. Synth. Met. 234, 1–8 (2017)CrossRefGoogle Scholar
  30. 30.
    P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 299 (1985)CrossRefGoogle Scholar
  31. 31.
    Y.K. Chen, L.V. Liu, W.Q. Tian, Y.A. Wang, Theoretical studies of transition-metal-doped single-walled carbon nanotubes. J. Phys. Chem. C. 115, 9306–9311 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Khorsand, S. Jamehbozorgi, R. Ghiasi, M. Rezvani, Structural, energetic and electrical properties of encapsulation of penicillamine drug into the CNTs based on vdW-DF perspective. Physica E 72, 120–127 (2015)CrossRefGoogle Scholar
  33. 33.
    G.S.M. Costa, P.P. Corbi, C. Abbehausen, A.L.B. Formiga, W.R. Lustri, A. Cuin, Silver (I) and gold (I) complexes with penicillamine: synthesis, spectroscopic characterization and biological studies. Polyhedron 34, 210–214 (2012)CrossRefGoogle Scholar
  34. 34.
    D. Sharmaa, N. Jaggi, Vibrational spectra and phonon dispersion analysis of a single-walled zigzag carbon nanotube: a first principles study. Can. J. Phys. 94(10), 1112–1118 (2016)CrossRefGoogle Scholar
  35. 35.
    D. Sharmaa, N. Jaggi, Two-gap superconductivity in niobium carbide-coated single-walled carbon nanotubes: a first-principles study. J Supercond Nov Magn. 30, 371–377 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Sharmaa, N. Jaggi, Static refractive index engineering of a singlewalled carbon nanotube through co-doping: a theoretical study. Optik 131, 267–272 (2017)CrossRefGoogle Scholar
  37. 37.
    D. Sharmaa, N. Jaggi, Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: a first principles study. Physica E 91, 93–100 (2017)CrossRefGoogle Scholar
  38. 38.
    M.B. Javan, A. Soltani, E.T. Lemeski, A. Ahmadi, S.M. Rad, Interaction of B12N12 nano-cage with cysteine through various functionalities: a DFT study. Superlattices Microstruct. 100, 24–37 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Soltani, Z. Azmoodeh, M.B. Javand, E.T. Lemeskie, L. Karami, A DFT study of adsorption of glycine onto the surface of BC2N nanotube. Appl. Surf. Sci. 384, 230–236 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Farideh Mashhadban
    • 1
  • Ashraf Sadat Ghasemi
    • 1
  • Fatemeh Ravari
    • 1
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations