Synthesis, Characterization and Magnetic Properties of Bi-metallic Copper Complex, as a Precursor for the Preparation of CuO Nanoparticles and Its Application for Removal of Arsenic from Water

  • Zohreh Razmara


This work involved the synthesis of bimetallic complex of [Cu(bpy)3][Cu(dipic)2]·2H2O (1) where dipic is pyridine-2,6-dicarboxylic acid and bpy is 2,2′-bipyridine, through the reaction of [Cu(bpy)5]2+ with [Cu(dipic)2]2−. The structure of complex (1) was characterized by, Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectroscopy, atomic absorption spectroscopy (AAS), elemental analysis and conductivity measurement. Also, thermal behavior of the complex was studied by thermo-gravimetric analysis (TGA and DTA) and the morphology of the complex was studied by scanning electron microscopy technique (SEM). The complex (1) was used as a precursor for the preparation of ferromagnetic nanoparticles of CuO by thermal decomposition at 600 °C. CuO nanoparticles were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Magnetic properties of complex (1) and CuO nanoparticles were studied at room temperature by vibrating sample magnetometer (VSM). The results of VSM indicate paramagnetic and ferromagnetic feature of and CuO nanoparticles, respectively. CuO nanoparticles with specific surface area of 69 m2/g and particle size of 20 nm were used as adsorbents to remove arsenic from contaminated water. The highest amount of arsenic adsorption on the surface of CuO nanoparticles occurs at pH 8 to 9 and contact time of 40 min. Based on this study, copper oxide nanoparticles can be effectively used to remove arsenic from water.

Graphical Abstract

Magnetization curves at 298 K (a) complex of [Cu(bpy)3][Cu(dipic)2]·2H2O: (b) nanoparticles of CuO


Bimetallic complex CuO nanoparticle Arsenic removal Thermal decomposition Magnetic properties 



The authors are grateful to the University of Zabol for financial support.


  1. 1.
    C. Noguera, Physics and Chemistry at Oxide Surfaces, (Cambridge University Press, Cambridge, 1996)CrossRefGoogle Scholar
  2. 2.
    H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, (Elsevier, Amsterdam, 1989)Google Scholar
  3. 3.
    V. Henrich, P. Cox, The Surface Chemistry of Metal Oxides. (Cambridge University Press, Cambridge, 1994)Google Scholar
  4. 4.
    J.A. Rodriguez, M. Fernández-García, Synthesis, Properties and Applications of Oxide Nanomaterials, (Wiley, Hoboken, 2007)CrossRefGoogle Scholar
  5. 5.
    M. Fernandez-Garcia, A. Martinez-Arias, J. Hanson, J. Rodriguez, Chem. Rev. 104(9), 4063 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Li, J. Rodriguez, J. Hrbek, H. Huang, G.-Q. Xu, Surf. Sci. 395(2–3), 216 (1998)CrossRefGoogle Scholar
  7. 7.
    S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, J. Mater. Chem. 21(42), 16819 (2011)CrossRefGoogle Scholar
  8. 8.
    J. Gao, H. Gu, B. Xu, Accounts Chem. Res. 42(8), 1097 (2009)CrossRefGoogle Scholar
  9. 9.
    T. Xie, L. Xu, C. Liu, Powder Tech. 232, 87 (2012)CrossRefGoogle Scholar
  10. 10.
    T. An, J. Chen, X. Nie, G. Li, H. Zhang, X. Liu, H. Zhao, ACS Appl. Mater. Inter. 4(11), 5988 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Teymourian, A. Salimi, S. Khezrian, Biosens. Bioelectron. 49, 1 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Gan, B. Jiang, J. Zhang, J. Appl. Polym. Sci. 59(6), 961 (1996)CrossRefGoogle Scholar
  13. 13.
    M. Rashad, I. Ibrahim, Struct. Mater. Tech. 27(4), 308 (2012)Google Scholar
  14. 14.
    N.A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev. 38(9), 2532 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, Y. Yin, Angew Chem. Int. Edit. 46(23), 4342 (2007)CrossRefGoogle Scholar
  16. 16.
    Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Adv. Funct. Mater. 23, 2436 (2013)Google Scholar
  17. 17.
    T. Yoon, J. Kim, J. Kim, J.K. Lee, Energies. 6(9), 4830 (2013)CrossRefGoogle Scholar
  18. 18.
    G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Chem. Mater. 22(18), 5306 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Leist, R. Casey, D. Caridi, J. Hazar Mater. 76(1), 125 (2000)CrossRefGoogle Scholar
  20. 20.
    C.A. Martinson, K. Reddy, J. Colloid Interf Sci. 336(2), 406 (2009)CrossRefGoogle Scholar
  21. 21.
    E.O. Kartinen, C.J. Martin, Desalination 103(1), 79 (1995)CrossRefGoogle Scholar
  22. 22.
    J.F. Ferguson, J. Gavis, Water Res. 6(11), 1259 (1972)CrossRefGoogle Scholar
  23. 23.
    M. Devereux, M. McCann, V. Leon, V. McKee, R.J. Ball, Polyhedron 21(11), 1063 (2002)CrossRefGoogle Scholar
  24. 24.
    M.V. Kirillova, M.F.C.G. da Silva, A.M. Kirillov, J.J.F. da Silva, A.J. Pombeiro, Inorg. Chim. Acta 360(2), 506 (2007)CrossRefGoogle Scholar
  25. 25.
    S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Mater. Res. Bull. 47(11), 3148 (2012)CrossRefGoogle Scholar
  26. 26.
    G. Kulkarni, K. Kannan, T. Arunarkavalli, C. Rao, Phys. Rev. B. 49(1), 724 (1994)CrossRefGoogle Scholar
  27. 27.
    C. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, B. Jeyadevan, K. Tohji, K. Chattopadhyay, J. Mag. Mag. Mater. 238(2), 281 (2002)CrossRefGoogle Scholar
  28. 28.
    J. Chen, C. Sorensen, K. Klabunde, G. Hadjipanayis, E. Devlin, A. Kostikas, Phys. Rev. B 54(13), 9288 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZabolZabolIran

Personalised recommendations