Advertisement

Designing of a New Heterogeneous Polymer Supported Naphthyl-Azo Iron Catalyst for the Selective Oxidation of Substituted Methyl Benzenes

  • Priyanka Basu
  • Tusar Kanto Dey
  • Aniruddha Ghosh
  • Sk Manirul Islam
Article

Abstract

A new and interesting heterogeneous iron-anchored naphthyl-azo catalyst (PS-Fe-NAPA) has been designed using aminopolystyrene and 2-nitrosonaphthol followed by loading iron in the naphthyl-azo complex. The prepared polymer supported material has been well characterized by FE-SEM, EDAX, TGA analysis, UV–Vis, FTIR, AAS, and elemental analysis. Iron-anchored naphthyl-azo complex exhibited excellent catalytic activity for the selective oxidation of toluene and substituted toluenes containing inactive benzylic C–H bonds in presence of mild oxidant hydrogen peroxide. Additionally, PS-Fe-NAPA complex is highly recyclable up-to six times without loss of its significant catalytic efficiency.

Keywords

Heterogeneous Naphthyl-azo Aminopolystyrene Iron anchored Toluene Hydrogen peroxide 

Notes

Acknowledgements

S.M.I. acknowledges the Department of Science and Technology, West Bengal (DST-WB, Sanction No. 811(sanc.)/ST/P/S&T/4G-8/2014 Dated: 04.01.2016) for financial support. PB is thankful to the NFOBC for UGC, New Delhi for her fellowship. AG is thankful to the SERB-NPDF, DST, New Delhi, India (File No. PDF/2017/000478) for his Post Doctoral research fellowship. We acknowledge Department of Science and Technology (DST) and University Grant Commission (UGC) New Delhi, India for providing support to the Department of Chemistry, the University of Kalyani under PURSE, FIST and SAP program.

References

  1. 1.
    S. Thakurta, P. Roy, R.J. Butcher, M.S. El Fallah, J. Tercero, E. Garribba, S. Mitra, Eur. J. Inorg. Chem. 2009, 4385 (2009)CrossRefGoogle Scholar
  2. 2.
    E. Battistel, R. Tassinari, M. Fornaroli, L. Bonoldi, J. Mol. Catal. A 202, 107 (2003)CrossRefGoogle Scholar
  3. 3.
    L. Duan, L. Wang, F. Li, F. Li, L. Sun, Acc. Chem. Res. 48, 2084 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Pradhan, J.K. Bartley, D. Bethell, Nat. Chem. 4, 134 (2012)CrossRefGoogle Scholar
  5. 5.
    S.S. Acharyya, S. Ghosh, R. Tiwari, B. Sarkar, R.K. Singha, C. Pendem, T. Sasaki, R. Bal, Green Chem. 16, 2500 (2014)CrossRefGoogle Scholar
  6. 6.
    G.C. Silva, N.M.F. Carvalho, A.H. Horn Jr., E.R. Lachter, O.A.C. Antunes, J. Mol. Catal. A 426, 564 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Villa, N. Dimitratos, C.E. Chan-Thaw, C. Hammond, L. Prati, G.J. Hutchings, J Acc. Chem. Res. 48, 1403 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Bruhne, E. Wright, Ullmann’s encyclopedia of industrial chemistry, vol. 5 (Wiley, Weinheim, 2012), p. 223Google Scholar
  9. 9.
    R.C. Dey, Md.M. Islam, M. Halder, A.S. Roy, Sk. M. Islam, ChemistrySelect 1, 6797 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Wang, J. Xu, Shi-j. Liao, Chem. Commun. 626 (2002)Google Scholar
  11. 11.
    W. Ma, Y. Zhang, X. Li, J. Zhao, Res. Chem. Intermed. 41, 3855 (2015)CrossRefGoogle Scholar
  12. 12.
    Q. Ma, C. Liang, K. Chen, K. Liu, J. Mao, Z. Chen, H. Li, J. Mol. Catal. A 420, 45 (2016)CrossRefGoogle Scholar
  13. 13.
    S.B. Khomane, D.S. Doke, M.K. Dongare, S.B. Halligudi, S.B. Umbarkar, Appl. Catal. A 531, 45 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Tashiro, T. Iwahama, S. Sakaguchi, Y. Ishii, Adv. Synth. Catal. 343, 220 (2001)CrossRefGoogle Scholar
  15. 15.
    X. Wu, Z. Deng, J. Yan, F. Zhang, Z. Zhang, Ind. Eng. Chem. Res. 53, 14601 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Biswas, A. Dutta, M. Dolai, M. Debnath, A.D. Jana, M. Ali, RSC Adv. 4, 34248 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Lu, N. Cai, J. Sun, X. Wang, X. Li, J. Zhao, Q. Cai, Chem. Eng. J. 225, 266 (2013)CrossRefGoogle Scholar
  18. 18.
    J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, J. Catal. 236, 69 (2005)CrossRefGoogle Scholar
  19. 19.
    K.T.V. Rao, P.S.N. Rao, P. Nagaraju, P.S. Saiprasad, N. Lingaiah, J. Mol. Catal. A 303, 84 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Jia, L.L. Lou, C. Zhang, Y. Zhang, S. Liu, J. Mol. Catal. A 306, 123 (2009)CrossRefGoogle Scholar
  21. 21.
    V.R. Choudhary, D.K. Dumbre, B.S. Uphade, V.S. Narkhede, J. Mol. Catal. A 215, 129 (2004)CrossRefGoogle Scholar
  22. 22.
    N. Viswanadham, S.K. Saxena, Ala’a H. Al-Muhtase, Mater. Today Chem. 3, 37 (2017)CrossRefGoogle Scholar
  23. 23.
    V.S. Kshirsagar, J.M. Nadgeri, P.R. Tayade, C.V. Rode, Appl. Catal. A 339, 28 (2008)CrossRefGoogle Scholar
  24. 24.
    X. Liet al, Catal. Lett. 110, 149 (2006)CrossRefGoogle Scholar
  25. 25.
    F. Wanget, et al., Adv. Synth. Catal. 347, 1987 (2005)CrossRefGoogle Scholar
  26. 26.
    J. Gao, X. Tong, X. Li, H. Miao, J. Xu, J. Chem. Technol. Biotechnol. 620, 2002 (2007)Google Scholar
  27. 27.
    R.L. Brutchey, I.J. Drake, A.T. Bell, T. Tilley, Chem. Commun. 3736 (2005)Google Scholar
  28. 28.
    A.P. Singh, T. Selvam, J. Mol. Catal. Chem. 113, 489 (1996)CrossRefGoogle Scholar
  29. 29.
    L. Kesavan, R. Tiruvalam, M.H.A. Rahim, M.I.A. Saiman, D.I. Enache, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, S.H. Taylor, D.W. Knight, C.J. Kiely, G.J. Hutchings, Science 331, 195 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Lv, Y. Shen, L. Peng, X. Guo, W. Ding, Chem. Commun. 46, 5909 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Ghosh. R. Saha., S.K. Ghosh, K. Mukherjee, B. Saha, Spectrochim. Acta A 109, 55 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Wang, J. Xu, X.Q. Li, J. Gao, L.P. Zhou, R. Ohnishi, Adv. Synth. Catal. 347, 1987 (2005)CrossRefGoogle Scholar
  33. 33.
    T. Garrell, S. Cohen, G.C. Dismukes, J. Mol. Catal. A 3, 187 (2002)Google Scholar
  34. 34.
    Snia-Viscosa, Hydrocarbon Proc. 134, 210 (1977)Google Scholar
  35. 35.
    H. Lin, J. Long, Q. Gu, W. Zhang, R. Ruan, Z. Li, X. Wang, Phys. Chem. Chem. Phys. 14, 9468 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Wang, H.R. Li, J. Yao, X.C. Wang, M. Antonietti, Chem. Sci. 2, 446 (2011)CrossRefGoogle Scholar
  37. 37.
    X.H. Li, X. Wang, M. Antonietti, ACS Catal. 2, 2082 (2012)CrossRefGoogle Scholar
  38. 38.
    G. Anbarasu, M. Malathy, P. Karthikeyan, R. Rajavel, J. Solid State Chem. 253, 305 (2017)CrossRefGoogle Scholar
  39. 39.
    S.M. Islam, M. Mobarok, P. Mondal, A.S. Roy, N. Salam, D. Hossain, S. Mondal, Transit. Met. Chem. 37, 97 (2012)CrossRefGoogle Scholar
  40. 40.
    F.A. Perras, J.D. Padmos, R.L. Johnson, L.L. Wang, T.J. Schwartz, T. Kobayashi, J.H. Horton, J.A. Dumesic, B.H. Shanks, D.D. Johnson, M. Pruski, J. Am. Chem. Soc. 139, 2702 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Zabihi, J. Shayegan, F. Khorasheh, J. Hazard. Mater. 333, 293 (2017)CrossRefGoogle Scholar
  42. 42.
    N.A. Grosso-Giordano, A.J. Yeh, A. Okrut, D.J. Xiao, F. Grandjean, G.J. Long, S.I. Zones, A. Katz, Chem. Mater. 29, 6480 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Parmeggiani, C. Matassini, F. Cardona, Green Chem. 19, 2030 (2017)CrossRefGoogle Scholar
  44. 44.
    Y. Liu, Y. Zhou, J. Li, Q. Wang, Q. Qin, W. Zhang, H. Asakura, N. Yan, W. Jun, Appl. Catal. B 209, 679 (2017)CrossRefGoogle Scholar
  45. 45.
    H. Wang, H. Ruan, M. Feng, Y. Qin, H. Job, L. Luo, C. Wang, M.H. Engelhard, E. Kuhn, X. Chen, M.P. Tucker, B. Yang, ChemSusChem 10, 1846 (2017)CrossRefGoogle Scholar
  46. 46.
    Z. Jeirani, J. Soltan, Chem. Eng. J. 307, 756 (2017)CrossRefGoogle Scholar
  47. 47.
    M.S. Ali, M.A. Khalafi-Nezhad, J. Ind. Eng. Chem. 50, 4 (2017)Google Scholar
  48. 48.
    S.M. Islam, S. Paul, A.S. Roy, P. Mondal, J. Inorg. Organomet. Polym. Mater. 23, 560 (2013)CrossRefGoogle Scholar
  49. 49.
    K.N. Kumar, R. Ramesh, Y. Liu, J. Mol. Catal. A 265, 218 (2007)CrossRefGoogle Scholar
  50. 50.
    F. Ding, Y. Sun, F. Verpoort, Eur. J. Inorg. Chem. 2010, 1536 (2010)CrossRefGoogle Scholar
  51. 51.
    P. Pattanayak, S.P. Parua, D. Patra, C.K. Lai, P. Brandao, V. Felix, S. Chattopadhyay, Inorg. Chim. Acta 429, 122 (2015)CrossRefGoogle Scholar
  52. 52.
    G. Anbarasu, M. Ganga, R. Gayathri, M. Malathy, P. Karthikeyan, V. Jayakkumar, R. Rajavel, Mater. Today 4, 12416 (2017)CrossRefGoogle Scholar
  53. 53.
    M. Ramesh, M. Kalidass, M. Jaccob, D. Kaleeswaran, G. Venkatachalam, J. Organomet. Chem. 830, 33 (2017)CrossRefGoogle Scholar
  54. 54.
    X. Wang, J. Wu, M. Zhao, Y. Lv, G. Li, C. Hu, J. Phys. Chem. C 113, 14270 (2009)CrossRefGoogle Scholar
  55. 55.
    J.A.A. Hoorn, P.L. Alsters, G.F. Versteeg, Int. J. Chem. React. Eng. 3, A6 (2005)Google Scholar
  56. 56.
    E.V. Kudrika, A.B. Sorokin, J. Mol. Catal. A 426, 499 (2017)CrossRefGoogle Scholar
  57. 57.
    K. Nomiya, K. Hashino, Y. Nemoto, M. Watanabe, J. Mol. Catal. A 176, 79 (2001)CrossRefGoogle Scholar
  58. 58.
    R. Neumann, M. de la Vega, J. Mol. Catal. 84, 93 (1993)CrossRefGoogle Scholar
  59. 59.
    B. Ma, Z. Zhang, W. Song, X. Xue, Y. Yu, Z. Zhao, Y. Ding, J. Mol. Catal. A 368–369, 152 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Priyanka Basu
    • 1
  • Tusar Kanto Dey
    • 1
  • Aniruddha Ghosh
    • 1
  • Sk Manirul Islam
    • 1
  1. 1.Department of ChemistryUniversity of KalyaniKalyani, NadiaIndia

Personalised recommendations