Comparison of the Growth of \({\text {TiO}}_{2}\) Nanotubes in Different Solutions

Article
  • 44 Downloads

Abstract

The kinetics of growth of tubular nanostructures of titanium dioxide (\({\text {TiO}}_{2}\)) obtained by means of the physic-chemical method of electro position under potentiostatic conditions is studied. For this investigation, four tests were carried out where some synthesis parameters were varied in chemical solution: water/fluorhydric acid/ammonium fluoride/ethylene glycol \((\text {H}_{2} \text {O/HF/NH}_{4}\text {F/EG})\) as well as the conditions of anodization. Therefore, the chemical attack in the anodization process is produced by the \(\text {NH}_{4}\text {F}\) and \(\text {HF}\) ions. The morphology of the resulting nanotubes was analyzed through scanning electron microscopy (SEM). The average length of the nanotubes was established, with a maximum value of 980 nm. By means of X-ray diffraction of the samples the structure was analyzed, obtaining a mixed phase of anatase and titanium. Using ultraviolet–visible spectroscopy (UV–Vis), the energy gap of the tests was found at different times of anodization. At 60 min of anodization, the energy gap of the samples varied between 3.56 and 3.68 eV. For a time of 30 min anodization, the energy gap of the samples varied between 3.58 and 3.63 eV with the same parameters of chemical synthesis. With obtaining of the curves of the current as a function of the time of anodization (I vs. t), the different stages of growth of the nanotubes and the regions that these stages define were determined. Analyzing of the behavior the current–time graphs and SEM measurements, it was observed that the best solution of the 4 tests used in this work was that of test 1.

Keywords

\({\text {TiO}}_{2}\) Nanotubes SEM Anodization Current 

Notes

Acknowledgements

The authors thank the National University of Colombia in Bogotá, We give thanks professor Jorge Bautista for the laboratory and professor Anderson D. who initially began the idea of the work.

Compliance with ethical standards

Conflicting Interest

That we have not signed an agreement with any sponsor of the research reported in the Contribution that prevents you from publishing both positive and negative results or that forbids you from publishing this research without the prior approval of the sponsor.

References

  1. 1.
    H. Tsuchiya, P. Schmuki, Electrochem. Commun. 6, 1131–1134 (2004)CrossRefGoogle Scholar
  2. 2.
    W.-J. Lee, W.H. Smyrl, Electrochem. Solid State Lett. 8, B7–B9 (2005)CrossRefGoogle Scholar
  3. 3.
    H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun. 7, 295–298 (2005)CrossRefGoogle Scholar
  4. 4.
    N.R. de Tacconi, C.R. Chenthamarakshan, G. Yogeeswaran, A. Watcharenwong, R.S. de Zoysa, N.A. Basit, K. Rajeshwar, J. Phys. Chem. B 110, 25347–25355 (2006)CrossRefGoogle Scholar
  5. 5.
    I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Electrochem. Commun. 7, 97–100 (2005)CrossRefGoogle Scholar
  6. 6.
    K.L. Robert, Electrochem. Commun. 7, 1190–1194 (2005)CrossRefGoogle Scholar
  7. 7.
    I. Sieber, B. Kannan, P. Schmuki, Electrochem. Solid State Lett. 8, J10–J12 (2005)CrossRefGoogle Scholar
  8. 8.
    H. El-Sayed, S. Singh, M.T. Greiner, P. Kruse, Nano Letters 6, 2995–2999 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Tsuchiya, P. Schmuki, Electrochem. Commun. 7, 49–52 (2005)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, S.P. Albu, D. Kim, P. Schmuki, Angew. Chem. Int. Ed. Engl. 50, 9071–9075 (2011)CrossRefGoogle Scholar
  11. 11.
    P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. Engl. 50, 2904–2939 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Assefpour-Dezfuly, C. Vlachos, E.H. Andrews, J. Mater. Sci. 19, 3626–3639 (1984)CrossRefGoogle Scholar
  13. 13.
    J.J. Kelly, Electrochim. Acta 24, 1273 (1979)CrossRefGoogle Scholar
  14. 14.
    S. Oh, Ch. Daraio, Li-Han Chen, ThR Pisanic, R.R. Fiones, S. Jin, J. Biomed. Mater. Res. A 78, 97–103 (2006)CrossRefGoogle Scholar
  15. 15.
    K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Biomaterials 28, 4880–4888 (2007)CrossRefGoogle Scholar
  16. 16.
    S.C. Roy, M. Paulose, C.A. Grimes, Biomaterials 28, 4667–4672 (2007)CrossRefGoogle Scholar
  17. 17.
    G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimer, J. Mater. Res. 19, 628–634 (2004)CrossRefGoogle Scholar
  18. 18.
    O.K. Varghese, G.K. Mor, C.A. Grimes, M. Paulose, N. Mukherjee, J. Nanosci. Nanotechnol. 4, 733–737 (2004)CrossRefGoogle Scholar
  19. 19.
    M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, K.G. Ong, Nanotechnology 17, 398–402 (2006)CrossRefGoogle Scholar
  20. 20.
    O.K. Varghese, X. Yang, J. Kendig, M. Paulose, K. Zeng, C. Palmer, K.G. Ong, C.A. Grimes, Sens. Lett. 4, 120–128 (2006)CrossRefGoogle Scholar
  21. 21.
    O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15, 624–627 (2003)CrossRefGoogle Scholar
  22. 22.
    E. Sxennik, Z. Colak, N. Kilinc, O. Zafer Ziya, Int. J. Hydrog. Energy 35, 4420–4427 (2010)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, Y.Z. Pan, S,S. Huang, S.T. Ren, P. Li, J.J. Li, Nnaotechnology 22(11), 025501 (2011)CrossRefGoogle Scholar
  24. 24.
    K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18(065707), 11 (2007)Google Scholar
  25. 25.
    M. Adachi, Y. Murata, I. Okada, Y. Yoshikawa, J. Electrochem. Soc. 150, G488–G493 (2003)CrossRefGoogle Scholar
  26. 26.
    S.K. Mohapatra, M. Misra, V.K. Mahajan, K,S. Raja, J. Phys. Chem. C 111(24), 8677–8685 (2007)CrossRefGoogle Scholar
  27. 27.
    O.K. Varghese, M. Paulose, T. LaTempa, Nano Letters 9(2), 731–737 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, Z. Wang, Y. Xia, Electrochim. Acta 50, 5641–5646 (2005)CrossRefGoogle Scholar
  29. 29.
    Q. Wang, W. Zhenhai, J. Li, J. Nanosci. Nanotechnol. 7(9), 3328–3331 (2007)CrossRefGoogle Scholar
  30. 30.
    K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express 1, 015012 (2014)CrossRefGoogle Scholar
  31. 31.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1–16 (2015)CrossRefGoogle Scholar
  32. 32.
    R.K. Raghava, N. Kazuya, O. Tsuyoshi, M. Taketoshi, T. Donald, A,F. Akira, J. Nanosci. Nanotechnol. 11(4), 3692–3695 (2011)CrossRefGoogle Scholar
  33. 33.
    K.R. Reddya, K.V. Karthik, S.B.B. Prasad, S.K. Soni, H.M. Jeong, Anjanapura V. Raghu, Polyhedron 120, 169–174 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.G. Grimes, J. Phys. Chem. B 110, 16179–16184 (2006)CrossRefGoogle Scholar
  35. 35.
    S. Yoriya, H.E. Prakasam, O.K. Varghese, K. Shankar, M. Paulose, G.K. Mor, T.A. Latempa, C.A. Grimes, Sens. Lett. 4, 334–339 (2006)CrossRefGoogle Scholar
  36. 36.
    K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18, 065707 (2007)CrossRefGoogle Scholar
  37. 37.
    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.J. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179–16184 (2006)CrossRefGoogle Scholar
  38. 38.
    H.E. Prakasam, K. Shankar, M. Paulose, C.A. Grimes, J. Phys. Chem. C 111, 7235–7241 (2007)CrossRefGoogle Scholar
  39. 39.
    D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331–3334 (2001)CrossRefGoogle Scholar
  40. 40.
    R. Beranek, H. Hildebrand, P. Schmuki, Electrochem. Solid State Lett. 6, B12 (2003)CrossRefGoogle Scholar
  41. 41.
    V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27, 629 (1999)CrossRefGoogle Scholar
  42. 42.
    J.M. Macak, K. Sirotna, P. Schmuki, Electrochim. Acta 50, 3679 (2005)CrossRefGoogle Scholar
  43. 43.
    J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44, 2100–2102 (2005)CrossRefGoogle Scholar
  44. 44.
    S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, Phys. Status Solidi 1, R65–R67 (2007)Google Scholar
  45. 45.
    L.V. Taveira, J.M. Macak, H. Tsuchiya, L.F. Dick, P. Schmuki, J. Electrochem. Soc. 152, B405 (2005)CrossRefGoogle Scholar
  46. 46.
    A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Electrochem. Commun. 7, 505 (2005)CrossRefGoogle Scholar
  47. 47.
    J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44, 7463 (2005)CrossRefGoogle Scholar
  48. 48.
    J.M. Macak, S.P. Albu, P. Schmuki, Phys. Status Solidi RRL 1, 181 (2007)CrossRefGoogle Scholar
  49. 49.
    H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun. 7, 576–580 (2005)CrossRefGoogle Scholar
  50. 50.
    N.K. Allam, C.A. Grimes, J. Phys. Chem. C 111, 13028–13032 (2007)CrossRefGoogle Scholar
  51. 51.
    X. Chen, M. Schriver, T. Suen, S.S. Mao, Thin Solid Films 515, 8511–8514 (2007)CrossRefGoogle Scholar
  52. 52.
    N.K. Allam, K. Shankar, C.A. Grimes, J. Mater. Chem. 18, 2341–2348 (2008)CrossRefGoogle Scholar
  53. 53.
    R.G. Kelly, P.J. Moran, J. Kruger, J. Electrochem. Soc. 136, 3262–3269 (1989)CrossRefGoogle Scholar
  54. 54.
    B. Melody, T. Kinard, P. Lessner, Electrochem. Solid State Lett 1, 126–129 (1998)CrossRefGoogle Scholar
  55. 55.
    B. Melody, T. Kinard, P. Lessner, Electrochem. Soc. 110, 938–940 (1963)CrossRefGoogle Scholar
  56. 56.
    T.J. Collins, (julio de, 2007) ImageJ for microscopy. BioTechniques 43(1 Suppl), 25–30 .  https://doi.org/10.2144/000112517
  57. 57.
    R.A. Young, The Rietlveld Method. International Union of Crystallography (Oxford Science Publication, Oxford, 1993)Google Scholar
  58. 58.
    Rodrigez-Carvajal J. Recent developments of the program FullPror Commission on Powder Diffraction, IUCr, Newsletter 26, December (2001)Google Scholar
  59. 59.
    P. Xiao, H. Fang, G. Cao, Y. Zhang, X. Zhang, Thin Solid Films 518, 7152 (2010)CrossRefGoogle Scholar
  60. 60.
    Q. Gui, D. Yu, D. Li, Y. Song, X. Zhu, L. Cao, S. Zhang, W. Ma, S. You, Appl. Surf. Sci. 314, 505–509 (2014)CrossRefGoogle Scholar
  61. 61.
    S. Sreekantan, K.A. Saharudin, Z. Lockman, T.W. Tzu, Nanotechnology. (2010).  https://doi.org/10.1088/0957-4484/21/36/365603
  62. 62.
    N. Liu, K. Lee, P. Schmuki, Electrochem. Commun. 15, 1–4 (2012)CrossRefGoogle Scholar
  63. 63.
    J.M. Macak, P. Schmuki, Electrochim. Acta 52, 1258–1264 (2006)CrossRefGoogle Scholar
  64. 64.
    von Herrn Dipl.-Ing. Jan Mack.Erlangen, Dissertation 2008Google Scholar
  65. 65.
    V.P. Parkhutik, V.I. Shershulsky, J. Phys. D 25, 1258 (1992)CrossRefGoogle Scholar
  66. 66.
    V. Kumar, S.K. Sharma, T.P. Sharma, V. Singh, Opt. Mater. 12, 115–119 (1999)CrossRefGoogle Scholar
  67. 67.
    K.I. Ishibashi, R.-T. Yamaguchi, Y. Kimura, M. Niwano, J. Electrochem. Soc. 155, K10–K14 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations