Skip to main content
Log in

Copper Nanoparticles: Synthesis, Characterization and Its Application as Catalyst for p-Nitrophenol Reduction

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two approaches in the synthesis of copper nanoparticles (CuNPs), namely the gamma radiolysis and chemical reduction methods were investigated. The XRD analysis illustrated that the chemically prepared CuNPs using ascorbic acid were oxidized partly to cuprous oxide (Cu2O). The radiolytic method provides CuNPs in fully reduced and highly pure state as compared to chemical reduction method. The optimum radiation dose at which the CuNPs was formed at high purity is 300 kGy. Also, the TEM images indicated that the average particle size of the CuNPs using gamma radiolysis method (33.6 nm) was smaller than those obtained by chemical reduction method (39.9 nm). The catalytic activity of CuNPs was evaluated on the reduction of p-nitrophenol (p-NP). The prepared CuNPs by gamma radiolysis method were found to exhibit higher activity than those of conventional chemical reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.S. Fu, M.N. Missaghi, C.M. Downing, M.C. Kung, H.H. Kung, G.M. Xiao, Chem. Mater. 22, 2181–2183 (2010)

    Article  CAS  Google Scholar 

  2. J.G.H. Wang, Z.R. Wang, ,Y.P. Shen, T. Liu ,D, H. Ding ,T, Chen, Cata 275, 140–148 (2010)

    Article  Google Scholar 

  3. S. Eliyahu, A. Vaskevich, I. Rubinstein, Thin Solid Films 519, 1661–1666 (2010)

    Article  Google Scholar 

  4. M.L. Kantam, V.S. Jaya, M.J. Lakshmi, B.R. Reddy, B.M. Choudary, S.K. Bhargava, Catal. Commun. 8, 1963–1968 (2007)

    Article  CAS  Google Scholar 

  5. S. Magdassi, M. Grouchko, A. Kamyshny, Materials 3, 4626–4638 (2010)

    Article  CAS  Google Scholar 

  6. A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, Nanotech. 23(8), 085103 (2012)

    Article  Google Scholar 

  7. D.M. Clifford, C.E. Castano, J.V. Rojas, Radiat. Phys. Chem. 132, 52–64 (2017)

    Article  CAS  Google Scholar 

  8. Z.I. Ali, O.A. Ghazy, G. Meligi, H.H. Saleh, M. Bekhit, Adv. Polym. Technol. (2016). https://doi.org/10.1002/adv.21675

    Google Scholar 

  9. A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawaleb, S.H. Pawar, Appl. Surf. Sci. 264, 598–604 (2013)

    Article  CAS  Google Scholar 

  10. N.A. Dhas, C.P. Rajcp, A. Gedanken, Chem. Mater. 10(5), 1446–1452 (1998)

    Article  CAS  Google Scholar 

  11. K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel, Am. Chem. Soc. 123(32), 7797–7803 (2001)

    Article  CAS  Google Scholar 

  12. I. Lisiecki, M.P. Pileni, Am. Chem. Soc. 115(10), 3887–3896 (1993)

    Article  CAS  Google Scholar 

  13. R.V. Kumar, Y. Mastai, Y. Diamant, A. Gedanken, Mater. Chem. 11(4), 1209–1213 (2001)

    Article  CAS  Google Scholar 

  14. M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, C.S. Yeh, Phys. Chem. B 103, 6851–6857 (1999)

    Article  CAS  Google Scholar 

  15. G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, G. Martra, Chem. Mater. 14(3), 1183–1186 (2002)

    Article  CAS  Google Scholar 

  16. Z. Liu, Y. Bando, Adv. Mater. 15(3), 303–305 (2003)

    Article  CAS  Google Scholar 

  17. H. Ohde, F. Hunt, C.M. Wai, Chem. Mater. 13(11), 4130–4135 (2001)

    Article  CAS  Google Scholar 

  18. H.-J. Lee, J.Y. Song, B.S. Kim, J. Chem. Technol. Biotechnol. 88, 1971–1977 (2013)

    CAS  Google Scholar 

  19. S.S. Joshi, S.F. Patil, V. Iyer, S. Mahamuni, Nanostruct. Mater. 10(7), 1135–1144 (1998)

    Article  CAS  Google Scholar 

  20. B.I. Kharisov, O.V. Kharissova, U.O. Méndez, Radiation Synthesis of Materials and Compounds, vol. 451 (CRC Press, Talyor & Francis Group, Boca Raton, 2013)

    Book  Google Scholar 

  21. J. Belloni, Curr. Opin. Colloid Interface Sci. 1, 184–196 (1996)

    Article  CAS  Google Scholar 

  22. A. Henglein, Phys. Chem. 97, 5457–5471 (1993)

    Article  CAS  Google Scholar 

  23. A. Henglein, Electronics of colloidal nanometer particles. Phys. Chem. 99, 903–913 (1995)

    Article  CAS  Google Scholar 

  24. J. Belloni, Catal. Today 113, 141–156 (2006)

    Article  CAS  Google Scholar 

  25. J. Marignier, J. Belloni, M. Delcourt, J. Chevalier, Nature 317, 344–345 (1985)

    Article  CAS  Google Scholar 

  26. K.P. Lee, A.I. Gopalan, P. Santhosh, S.H. Lee, Y.C. Nho, Compos. Sci. Technol 67, 811–816 (2007)

    Article  CAS  Google Scholar 

  27. T. Lai, H.G. Park, S.H. Choi, Mater. Chem. Phys. 105, 325–330 (2007)

    Article  Google Scholar 

  28. K. Naghavi, E. Saion, K. Rezaee, W.M. Yunus, Radiat. Phys. Chem. 79, 1203–1208 (2010)

    Article  CAS  Google Scholar 

  29. A. Abedini, A.R. Daud, M.A. Abdul Hamid, N.K. Othman, E. Saion, Nanoscale Res. Lett. 8, 474 (2013)

    Article  Google Scholar 

  30. J.V. Rojas, C.H. Castano, Radiat. Phys. Chem. 99, 1–5 (2014)

    Article  CAS  Google Scholar 

  31. K.B. Narayanan, N. Sakthivel, Bioresour. Technol. 102, 10737–10740 (2011)

    Article  CAS  Google Scholar 

  32. T.-L. Lai, K.-F. Yong, J.-W. Yu, J.-H. Chen, Y.-Y. Shu, C.-B. Wang, J. Hazard. Mater. 185, 366–372 (2011)

    Article  CAS  Google Scholar 

  33. J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, J. Hazard. Mater. 201–202, 250–259 (2012)

    Article  Google Scholar 

  34. J. Feng, L. Su, ,Y. Ma, C. Ren, ,Q. Guo, X. Chen, Chem. Eng. J. 221, 16–24 (2013)

    Article  CAS  Google Scholar 

  35. N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chupakhin, S. Santra, Coord. Chem. Rev. 353, 1–57 (2017)

    Article  CAS  Google Scholar 

  36. D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816–854, (2017)

    Article  CAS  Google Scholar 

  37. M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. Varma, Chem. Rev. 116, 3722–3811 (2016)

    Article  CAS  Google Scholar 

  38. L. Qing-Ming, T. Yasunami, K. Kuruda, M. Okido, Trans. Nonferr. Met. Soc. China 22, 2198–2203 (2012)

    Article  Google Scholar 

  39. F. Zhou, R. Zhou, X. Hao, X. Wu, W. Rao, Y. Chen, D. Gao, Radiat. Phys. Chem. 77, 169–173 (2008)

    Article  CAS  Google Scholar 

  40. L.Q. Pham, J.H. Sohn, J.H. Park, H.S. Kang, B.C. Lee, Y.S. Kang, Radiat. Phys. Chem. 80, 638–642 (2011)

    Article  CAS  Google Scholar 

  41. B.D. Cullity, Elements of X-Ray Diffraction (Addison Wesley Pub. Co. Inc., London, MA, 1978), p. 102

    Google Scholar 

  42. E. Davis, N.F. Mott, Philos. Mag. 22, 903–922 (1970)

    Article  CAS  Google Scholar 

  43. J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, K. Sharma, Mater. Chem. Phys. 134, 1121–1126 (2012)

    Article  CAS  Google Scholar 

  44. K. Kuroda, T. Ishida, M. Haruta, Mol. Catal. A 298, 7–11 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Science & Technology Development Fund (STDF) in Egypt under the Grant Number (6370). The authors would like to thank the STDF for their fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bekhit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z.I., Ghazy, O.A., Meligi, G. et al. Copper Nanoparticles: Synthesis, Characterization and Its Application as Catalyst for p-Nitrophenol Reduction. J Inorg Organomet Polym 28, 1195–1205 (2018). https://doi.org/10.1007/s10904-018-0780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0780-4

Keywords

Navigation