Skip to main content
Log in

Interaction Behavior of Cyanogen Fluoride and Chloride Gas Molecules on Red Phosphorene Nanosheet: A DFT Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The adsorption of cyanogen fluoride and chloride gas molecules on red phosphorene (RP) nanosheet was investigated using the first-principles calculation. We confirmed the geometric solidity of RP nanosheet using the formation energy and the energy band gap is detected to be 0.72 eV. The most stable adsorption configurations of cyanogen halides are studied by energy band gap variation, Bader charge transfer, and adsorption energy. We observed the physisorption type of interaction upon exposure of cyanogen halides on RP nanosheet. Furthermore, the band gap structure along with the density of states spectrum indicates the physisorption of cyanogen halide on RP nanosheet. The variation in the band gap upon adsorption leads to modify the resistance of RP nanosheet. The findings show that RP nanosheets can be used to detect the presence of cyanogen chloride and fluoride.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, X.M.S. Strano, X.V.R. Cooper, O.L. Liang, S.G. Louie, E. Ringe, W. Zhou, O.S.S. Kim, R.R. Naik, B.G. Sumpter, O.H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, ÂM. Terrones, J.A. Robinson, Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. S. Zhang, S. Guo, Z. Chen, Y. Wang, Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47, 982–1021 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. D. Geng, H.Y. Yang, Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 30, 1800865 (2018)

    Article  CAS  Google Scholar 

  4. M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J.E. Mroczkowska, G. Sumanasekera, J.B. Jasinski, Recent advances in synthesis, properties, and applications of phosphorene. Npj 2D Mater. Appl. 5, 1–13 (2017). https://doi.org/10.1038/s41699-017-0007-5

    Article  CAS  Google Scholar 

  5. G.Z. Magda, J. Pető, G. Dobrik, C. Hwang, L.P. Biró, Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5, 14714 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. C. He, C. Zhang, C. Tang, T. Ouyang, J. Li, J. Zhong, Five low energy phosphorene allotropes constructed through gene segments recombination. Sci. Rep. 7, 46431 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  8. L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties and applications. J. Phys. Chem. Lett. 6, 2794–2805 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914)

    Article  CAS  Google Scholar 

  10. A.R. Davletshin, S.V. Ustiuzhanina, A.A. Kistanov, D. Saadatmand, S.V. Dmitriev, K. Zhou, E.A. Korznikova, Electronic structure of graphene- and BN-supported phosphorene. Phys. B 534, 63–67 (2018)

    Article  CAS  Google Scholar 

  11. H. Zhang, W. Hu, A. Du, X. Lu, Y. Zhang, J. Zhou, X. Lin, Y. Tang, Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433, 249–255 (2018)

    Article  CAS  Google Scholar 

  12. Y. Xu, W. Guo, Optimal water adsorption on phosphorene. J. Alloys Compd. 737, 365–371 (2018)

    Article  CAS  Google Scholar 

  13. P. Rubio-pereda, G.H. Cocoletzi, Density functional theory calculations of biomolecules adsorption on phosphorene for biomedical applications. Appl. Surf. Sci. 427, 1227–1234 (2018)

    Article  CAS  Google Scholar 

  14. S. Cho, Y. Lee, H. Koh, H. Jung, J. Kim, H. Yoo, J. Kim, H. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28, 7020–7028 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. P. Yasaei, A. Behranginia, T. Foroozan, M. Asadi, K. Kim, Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 9, 9898–9905 (2015)

    Article  CAS  Google Scholar 

  16. A. Yang, D. Wang, X. Wang, D. Zhang, N. Koratkar, Recent advances in phosphorene as a sensing material. Nano Today 20, 13–32 (2018)

    Article  CAS  Google Scholar 

  17. R.C. Gupta, Handbook of Toxicology of Chemical Warfare Agents (Academic Press, New York, 2009), pp 1168. https://doi.org/10.1016/B978-0-12-374484-5.X0001-6

    Book  Google Scholar 

  18. T. Movlarooy, M.A. Fadradi, Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing. Chem. Phys. Lett. 700, 7–14 (2018)

    Article  CAS  Google Scholar 

  19. A. Soltani, M.T. Baei, A.S. Ghasemi, E.T. Lemeski, K. Hosseni, Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices Microstruct. 75, 564–575 (2014)

    Article  CAS  Google Scholar 

  20. E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, K. Nejati, Selective detection of cyanogen halides by BN nanocluster: a DFT study. J. Mol. Model. 23, 138 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials. J. Phys. 14, 2745–2779 (2002)

    CAS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    Article  CAS  Google Scholar 

  24. R.K. Bhavadharani, V. Nagarajan, R. Chandiramouli, Applied surface science density functional study on the binding properties of nucleobases to stanane nanosheet. Appl. Surf. Sci. 462, 831–839 (2018)

    Article  CAS  Google Scholar 

  25. J.D. Pack, H.J. Monkhorst, Special points for Brillouin-zone integrations. Phys. Rev. B 16, 1748–1749 (1977)

    Article  Google Scholar 

  26. R.G. Amorim, R.H. Scheicher, Silicene as a new potential DNA sequencing device. Nanotechnology 26, 154002 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. S. Mukhopadhyay, R.H. Scheicher, R. Pandey, S.P. Karna, Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J. Phys. Chem. Lett. 2, 2442–2447 (2011)

    Article  CAS  Google Scholar 

  28. H. Search, C. Journals, A. Contact, M. Iopscience, I.P. Address, A new phase of phosphorus: the missed tricycle type red phosphorene. J. Phys. 27, 265301 (2015)

    Google Scholar 

  29. P. Snehha, V. Nagarajan, R. Chandiramouli, Doped aluminum nanocones as an efficient electron field emitter: a first-principles investigation. Inorg. Chem. Commun. 96, 5–12 (2018)

    Article  CAS  Google Scholar 

  30. L. Turi, J. Dannenberg, Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction. J. Phys. Chem. 97, 2488–2490 (1993)

    Article  CAS  Google Scholar 

  31. J. Beheshtian, M.T. Baei, Z. Bagheri, A.A. Peyghan, AlN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectron. J. 43, 452–455 (2012)

    Article  CAS  Google Scholar 

  32. R. Chandiramouli, Antimonene nanosheet device for detection of explosive vapors—a first-principles inspection. Chem. Phys. Lett. 708, 130–137 (2018)

    Article  CAS  Google Scholar 

  33. A.A. Peyghan, M. Noei, S. Yourdkhani, Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct. 59, 115–122 (2013)

    Article  CAS  Google Scholar 

  34. J. Beheshtian, M. Noei, H. Soleymanabadi, A. Ahmadi, Ammonia monitoring by carbon nitride nanotubes: a density functional study. Thin Solid Films 534, 650–654 (2013)

    Article  CAS  Google Scholar 

  35. S. Gholami, A. Shokuhi, A. Heydarinasab, M. Ardjmand, Adsorption of adenine on the surface of nickel-decorated graphene; a DFT study. J. Alloys Compd. 686, 662–668 (2016)

    Article  CAS  Google Scholar 

  36. A. Shokuhi, E. Sani, E. Binaeian, M. Peyravi, M. Jahanshahi, DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene. Appl. Surf. Sci. 401, 156–161 (2017)

    Article  CAS  Google Scholar 

  37. H. Ullah, A.A. Tahir, T.K. Mallick, Polypyrrole/TiO2 composites for the application of photocatalysis. Sens. Actuators B 241, 1161–1169 (2016)

    Article  CAS  Google Scholar 

  38. H. Ullah, A.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)

    Article  CAS  Google Scholar 

  39. H.N.V. Reyes, E.C. Anota, M. Castro, C60-like boron carbide and carbon nitride fullerenes: stability and electronic properties obtained by DFT methods. Fullerenes Nanotubes Carbon Nanostruct. 26, 52–60 (2018)

    Article  Google Scholar 

  40. J.C. Ordaz, E.C. Anota, M.S. Villanueva, M. Castro, Possibility of a magnetic [BN fullerene:B6 cluster]—nanocomposite as a vehicle for the delivery of dapsone. New J. Chem. 41, 8045–8052 (2017)

    Article  Google Scholar 

  41. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, First-principles insights on the electronic and field emission properties of Ga and Al doped germanium nanocones. J. Electron Spectrosc. Relat. Phenom. 227, 15–22 (2018)

    Article  CAS  Google Scholar 

  42. T.P. Kaloni, R.P. Joshi, N.P. Adhikari, U. Schwingenschlögl, Band gap tunning in BN-doped graphene systems with high carrier mobility. Appl. Phys. Lett. 104, 073116 (2014)

    Article  CAS  Google Scholar 

  43. S. Mukherjee, T.P. Kaloni, Electronic properties of boron- and nitrogen-doped graphene: a first principles study. J. Nanopart. Res. 14, 1059 (2012)

    Article  CAS  Google Scholar 

  44. T.P. Kaloni, G. Schreckenbach, M.S. Freund, U. Schwingenschlögl, Current developments in silicene and germanene. Phys. Status Solidi RRL 142, 133–142 (2016)

    Article  CAS  Google Scholar 

  45. V. Nagarajan, R. Chandiramouli, Interaction studies of ammonia gas molecules on borophene nanosheet and nanotubes: a density functional study. J. Inorg. Organomet. Polym. Mater. 28, 920–931 (2018)

    Article  CAS  Google Scholar 

  46. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Arsenene nanotube as a chemical sensor to detect the presence of explosive vapors: a first-principles insight. J. Inorg. Organomet. Polym. Mater. 28, 2844–2853 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to Nano Mission Council (No.SR/NM/NS-1011/2017(G)) Department of Science & Technology, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1883 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snehha, P., Nagarajan, V. & Chandiramouli, R. Interaction Behavior of Cyanogen Fluoride and Chloride Gas Molecules on Red Phosphorene Nanosheet: A DFT Study. J Inorg Organomet Polym 29, 954–963 (2019). https://doi.org/10.1007/s10904-018-01070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-01070-3

Keywords

Navigation