Structural and Photoluminescence Properties of nc-SiOx:H/a-SiOx:H Multilayer Films Deposited at Low Temperature by VHF-PECVD Technique

  • Dongze Gao
  • Yun Li
  • Bohui Zhang
  • Xinzhan Wang
  • Wanbing LuEmail author
  • Haixu Liu
  • Ridong Cong
  • Wei YuEmail author
  • Guangsheng Fu


Hydrogenated nanocrystalline silicon oxide/hydrogenated amorphous silicon oxide (nc-SiOx:H/a-SiOx:H) multilayer films were fabricated using very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique by alternate deposition of nc-SiOx:H and a-SiOx:H at a low substrate temperature of 220 °C. The effects of the amount of oxygen incorporation in the nc-SiOx:H sublayers on the structural and photoluminescence (PL) properties of nc-SiOx:H/a-SiOx:H multilayer films were investigated by transmission electron microscopy, Raman scattering, UV–VIS-NIR absorption spectra, steady and time-resolved PL spectra. As the amount of oxygen incorporation increases, the crystalline volume fraction of multilayer films decreases, while the intermediate-range order of multilayer films firstly increases and then decreases. Strong room temperature PL has been observed in the multilayer films and the correlation between structural and PL properties is discussed. This low-temperature procedure for fabricating nc-SiOx:H/a-SiOx:H multilayer films can provide powerful impetus for the further development of optoelectronic devices based on Si-NCs.


Hydrogenated nanocrystalline silicon oxide VHF-PECVD Multilayer films Photoluminescence 



This work is financially supported by National Natural Science Foundation of China (Grant No. 61504036), Natural Science Foundation of Hebei Province, PR China (Grant No. F2017201101) and Natural Science Foundation of Hebei University (Grant No. 2012-235).


  1. 1.
    D. Das, D. Kar, Structural studies of n-type nc-Si–QD thin films for nc-Si solar cells. J. Phys. Chem. Solids 111, 115–122 (2017)CrossRefGoogle Scholar
  2. 2.
    C. Huh, K. Kim, B.K. Kim., W. Kim, H. Ko, C. Choi, G.Y. Sung, Enhancement in light emission efficiency of a silicon nanocrystal light emitting diode by multiple luminescent structures. Adv. Mater. 22, 5058–5062 (2010)CrossRefGoogle Scholar
  3. 3.
    S.K. Kim, B.H. Kim, C.H. Cho, S.J. Park, Size-dependent photocurrent of photodetectors with silicon nanocrystals. Appl. Phys. Lett. 94, 183106 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Pavesi, L.D. Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000)CrossRefGoogle Scholar
  5. 5.
    S. Hong, I.B. Baek, G.Y. Kwak, S.H. Lee, J.S. Jang, K.J. Kim, A. Kim, Improved electrical properties of silicon quantum dot layers for photovoltaic applications. Sol. Energy Mater. Sol. Cells 150, 71–75 (2016)CrossRefGoogle Scholar
  6. 6.
    T. Frickebegemann, N. Wang, P. Peretzki, M. Seibt, J. Ihlemann, Generation of silicon nanocrystals by damage free continuous wave laser annealing of substrate-bound SiOx films. J. Appl. Phys. 118, 124308 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Dominguez, J.A. Rodriguez, F.J. Munoz, N. Zine, The effect of rapid thermal annealing on properties of plasma enhanced CVD silicon oxide. Thin Solid Films 346, 202–206 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Samanta, D. Das, SiOx nanowires with intrinsic nc-Si quantum dots: the enhancement of the optical absorption and photoluminescence. J. Mater. Chem. C 1, 6623–6629 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Limpens, A. Lesage, M. Fujii, T. Gregorkiewicz, Size confinement of Si nanocrystals in multinanolayer structures. Sci. Rep. 5, 17289 (2015)CrossRefGoogle Scholar
  10. 10.
    E.C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S.C. Park, M.A. Green, Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19, 245201 (2008)CrossRefGoogle Scholar
  11. 11.
    E. Mota-Pineda, M. Meléndez-Lira, M. Zapata-Torres, P.D. Angel, A. Pérez-Centeno, S. Jiménez-Sandoval, M.A. Santana-Aranda, Photoluminescence of as-grown and thermal annealed–nanocrystals heterolayers grown by reactive rf sputtering. J. Appl. Phys. 108, 094323 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Das, P. Mondal, Correlation between the physical parameters of the i–nc-Si absorber layer grown by 27.12 MHz plasma with the nc-Si solar cell parameters. Appl. Surf. Sci. 416, 980–987 (2017)CrossRefGoogle Scholar
  13. 13.
    J.D. Fields, S. Mcmurray, L.R. Wienkes, C. Anderson, P.L. Miller, B.J. Simonds, J. Kakalios, U. Kortshagen, M.T. Lusk, R.T. Collins, P.C. Taylor, Quantum confinement in mixed phase silicon thin films grown by co-deposition plasma processing. Sol. Energy Mater. Sol. Cells 129, 7–12 (2014)CrossRefGoogle Scholar
  14. 14.
    A.T. Voutsas, M.K. Hatalis, J. Boyce, A. Chiang, Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition. J. Appl. Phys. 78, 6999–7006 (1995)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, R. Cong, W. Zhao, Y. Li, C. Jin, W. Yu, G. Fu, Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells. Sci. Bull. 61, 787–793 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. Xie, Raman shifts in Si nanocrystals. Appl. Phys. Lett. 69, 200 (1996)CrossRefGoogle Scholar
  17. 17.
    R.L. Vink, G.T. Barkema, W.F. Weg, Raman spectra and structure of amorphous Si. Phys. Rev. B 63, 115210 (2001)CrossRefGoogle Scholar
  18. 18.
    H. Tan, P. Babal, M. Zeman et al., Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells. Sol. Energy Mater. Sol. Cells 132, 597–605 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Solid 15, 627–637 (1966)CrossRefGoogle Scholar
  20. 20.
    D. Das, A novel approach towards silicon nanotechnology. J. Phys. D 36, 2335 (2003)CrossRefGoogle Scholar
  21. 21.
    D. Das, S. Samanta, Controlling the opto-electronic properties of nc-SiOx: H films by promotion of < 220> orientation in the growth of ultra-nanocrystallites at the grain boundary, Appl. Surf. Sci. 428, 757–766 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Chew, S.F.Y. Rusli, J. Ahn, V. Ligatchev, Hydrogenated amorphous silicon carbide deposition using electron cyclotron resonance chemical vapor deposition under high microwave power and strong hydrogen dilution. J. Appl. Phys. 92, 2937–2941 (2002)CrossRefGoogle Scholar
  23. 23.
    E. Tuğay, R. Turan, Investigation of photoluminescence mechanisms from SiO2/Si:SiO2/SiO2 structures in weak quantum confined regime by deconvolution of photoluminescence spectra. J. Nanosci. Nanotechnol. 16, 4052–4064 (2016)CrossRefGoogle Scholar
  24. 24.
    X.X. Wang, J.G. Zhang, L. Ding, B.W. Cheng, W.K. Ge, J.Z. Yu, Q.M. Wang, Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix. Phys. Rev. B 72, 195313 (2005)CrossRefGoogle Scholar
  25. 25.
    L. Pavesi, M. Ceschini, Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B 48, 17625 (1993)CrossRefGoogle Scholar
  26. 26.
    O. Guillois, N. Herlin-Boime, C. Reynaud, G. Ledoux, F. Huisken, Photoluminescence decay dynamics of noninteracting silicon nanocrystals. J. Appl. Phys. 95, 3677 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Kořínek, M. Kozák, F. Trojánek, D. Hiller, A. Hartel, S. Gutsch, P. Malý, Photoexcited charge carrier dynamics in silicon nanocrystal/SiO2 superlattices. Physica E 56, 177 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Okamoto, S. Vyawahare, A. Scherer, Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals. J. Opt. Soc. Am. B 23, 1674 (2006)CrossRefGoogle Scholar
  29. 29.
    W.D.A.M. de Boer, D. Timmerman, K. Dohnalova, I.N. Yassievich, H. Zhang, W.J. Buma, T. Gregorkiewicz, Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat. Nanotechnol. 5, 878 (2010)CrossRefGoogle Scholar
  30. 30.
    G. Zatryb, A. Podhorodecki, X.J. Hao, J. Misiewicz, Y.S. .Shen, M.A. Green, Quantitative evaluation of boron-induced disorder in multilayered matrix containing silicon nanocrystals designed for photovoltaic applications. Opt. Express 18, 22004 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physical Science and TechnologyHebei UniversityBaodingChina

Personalised recommendations