Novel Benzidine and o-Phenylenediamine Copolymer–Matrix Microcomposites

Article
  • 27 Downloads

Abstract

Poly(benzidine-co-o-phenylenediamine)/bentonite composites were fabricated utilizing several bentonite percentages by a facile oxidative copolymerization. The composites were clarified by means of FT-IR and UV–Vis absorption spectra of both poly(benzidine-co-o-phenylenediamine) emeraldine base, and poly(benzidine-co-o-phenylenediamine)/bentonite composite. The conjunction of o-phenylenediamine monomer with polybenzidine skeleton in the existence of bentonite was proven. TGA analyses under non-oxidative condition were studied. Moreover, at different magnifications, SEM of bentonite composite was examined having micrometric particle sizes in the range of 0.24–0.80 μm. A comparison of XRD patterns of the synthesized polymer and composite was discussed.

Graphical Abstract

Keywords

Microcomposites Oxidative polymerization Bentonite TGA SEM XRD 

Notes

Compliance with Ethical Standards

Conflict of interest

No conflict of interest.

Supplementary material

10904_2017_777_MOESM1_ESM.jpg (227 kb)
Supplementary material 1 (JPG 226 KB)

References

  1. 1.
    A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, O. Kamigaito, Nylon 6-clay hybrid. Mater. Res. Soc. Symp. Proc. 171, 45–50 (1990)CrossRefGoogle Scholar
  2. 2.
    A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, O. Kamigaito, Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J. Mater. Res. 8, 1174–1178 (1993)CrossRefGoogle Scholar
  3. 3.
    T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42, 9929–9940 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Okada, Y. Fukushima, M. Kawasumi, S. Inagaki, A. Usuki, S. Sugiyama, T. Kurauchi, O. Kamigatio, Composite material and its preparation, (assigned to Toyota Motor Co., Japan). United States Patent No. 4,739,007 (1987)Google Scholar
  5. 5.
    R.A. Vaia, H. Ishii, E.P. Giannelis, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694–1696 (1993)CrossRefGoogle Scholar
  6. 6.
    V. Mehrotra, E.P. Giannelis, Conductingmolecularmultilayers: intercalation of conjugated polymers in layered media. Mater. Res. Soc.Symp. Proc. 171, 39–44 (1990)CrossRefGoogle Scholar
  7. 7.
    S. Pavlidou, C.D. Papaspyrides, A review on polymer-layered silicate nanocompopsites. Prog. Polym. Sci. 32, 1119–1198 (2008)CrossRefGoogle Scholar
  8. 8.
    S.S. Ray, A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer 51, 3966–3970 (2010)CrossRefGoogle Scholar
  9. 9.
    A.S. Al-Hussaini, K.R. Eltabie, M.E.E. Rashad, One-pot modern fabrication and characterization of TiO2@terpoly(aniline, anthranilic acid and o-phenylenediamine) core-shell nanocomposites via polycondensation. Polymer 101, 328–337 (2016)CrossRefGoogle Scholar
  10. 10.
    M.S. Zoromba, A.A.M. Belal, A.S. Al-Hussaini, From copolymer precursor to metal oxides nanoparticles: synthesis and characterization of doped copper and cobalt copolymer via in situ and ex situ copolymerization. J. Macromol. Sci. A 52(5), 394–400 (2015)CrossRefGoogle Scholar
  11. 11.
    A.S. Al-Hussaini, A.M. Elias, M.A. Abd El-Ghaffar, New poly(aniline-co-o-phenylenediamine)/kaolinite microcomposites for water decontamination. J. Polym. Environ. 25, 35–45 (2017)CrossRefGoogle Scholar
  12. 12.
    A.S. Al-Hussaini, New polymeric based materials: terpoly(aniline, diphenyl amine, and o-anthranilic acid)/kaolinite composites. Polym. Adv. Technol. 27, 1604–1608 (2016)CrossRefGoogle Scholar
  13. 13.
    A.S. Al-Hussaini, Inexpensive fabrication and characterization of crystalline poly(o-anthranilic acid-co-o-phenylenediamine) emeraldine base/bentonite nanocomposites. Polym. Plast. Technol. Eng. 55(13), 1386–1392 (2016)CrossRefGoogle Scholar
  14. 14.
    A.S. Al-Hussaini, Modified non-conventional synthesis of new terpoly(aniline, o-anthranilic acid and o-phenylenediamine)/bentonite composites. Polym. Plast. Technol. Eng. 54(1), 61–67 (2015)CrossRefGoogle Scholar
  15. 15.
    A.S. Al-Hussaini, W. Eldars, Non-conventional synthesis and antibacterial activity of poly(aniline-co-o-phenylenediamine)/bentonite nanocomposites. Des. Monomers Polym. 17(5), 458–465 (2014)CrossRefGoogle Scholar
  16. 16.
    A.S. Al-Hussaini, M. Zoromba, Sh., New crystalline aniline and o-anthranilic acid copolymer/kaolinite composites. Polym. Plast. Technol. Eng. 53, 1021–1027 (2014)CrossRefGoogle Scholar
  17. 17.
    A.S. Al-Hussaini, In situ oxidative copolymerization and characterization of new poly(benzidine-co-o-phenylenediamine)/kaolinite microcomposites. Polym. Sci. Ser. B 59(3), 372–378 (2017)CrossRefGoogle Scholar
  18. 18.
    B.C. Roy, M.D. Gupta, J.K. Ray, Studies on conducting polymers. 1. Aniline-Initiated polymerization of nitroanilines. Macromolecules 28, 1727–1732 (1995)CrossRefGoogle Scholar
  19. 19.
    E.M. Genies, P. Noel, Oxidation of 2,5-dimethylaniline in NH4F, 2.35 HF medium characteristics of the resulting conducting polymer. J. Electroanal. Chem. 296, 473–490 (1990)CrossRefGoogle Scholar
  20. 20.
    D.C. Trivedi, H.S. Nalwa, in Organic Conductive Molecules Polymers, 2nd edn. Wiley, New York, 1997), p. 537Google Scholar
  21. 21.
    A.S. Al-Hussaini, W. Eldars, Cheap synthesis, characterization and antibacterial efficacy of new copoly(o-nitroaniline-co-o-phenylenediamine) emeraldine base/bentonite composites. Inorg. Organomet. Polym. Mater. 26(3), 691–701 (2016)CrossRefGoogle Scholar
  22. 22.
    Zoromba, M. Sh.; Al-Hussaini, A. S., Terpolymers as precursors for CuO nanoparticles synthesis. J. Appl. Polym. Sci. 131(23), 12333–12338 (2014).CrossRefGoogle Scholar
  23. 23.
    L.W. Shackelette, J.F. Wolf, S. Gould, R.H. Baughman, Structure and properties of polyaniline as modeled by single-crystal oligomers. J. Chem. Phys. 88, 3955–3961 (1988)CrossRefGoogle Scholar
  24. 24.
    Challier, T.; Slade, R. C. T., Nanocomposite materials: polyaniline-intercalated layered double hydroxides. J. Mat. Chem. 4, 367–372 (1994).CrossRefGoogle Scholar
  25. 25.
    A. Mostafaei, F. Nasirpouri, Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints. Prog. Org. Coat. 77, 146–159 (2014)CrossRefGoogle Scholar
  26. 26.
    A.B. Dehkordi, J. Moghaddam, A. Mostafaei, An optimization study on the leaching of zinc cathode melting furnace slag in ammonium chloride by Taguchi design and synthesis of ZnO nanorods via precipitation methods. Mater. Res. Bull. 48, 4235–4247 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Muslim, D. Malik, A.A. Rexit, Effects of monomer concentration on the structure and properties of polybenzidine micro rods. Polym. Sci. Ser. B 54, 518–524 (2012)CrossRefGoogle Scholar
  28. 28.
    U. Bogdanovic, V.V. Vodnik, S.P. Ahrenkiel, M. Stoiljkovic, G. Ciric-Marjanovic, J.M. Nedeljkovic, Interfacial synthesis and characterization of gold/polyaniline nanocomposites. Synth. Methods 195, 122–131 (2014)CrossRefGoogle Scholar
  29. 29.
    M.N. Kumar, M. Nagabhooshanam, M. Anand Rao, M. Bhagvanth Rao, Preparation and characterization of doped polybenzidine. Cryst. Res. Technol. 36, 309–317 (2001)CrossRefGoogle Scholar
  30. 30.
    E. Ekinci, M. Ozden, M.H. Turkdemir, E. Karagözler, Preparation and properties of polybenzidine film-coated electrode as an H2O2 selective polymeric material. J. Appl. Polym. Sci. 70, 2227–2234 (1998)CrossRefGoogle Scholar
  31. 31.
    F. D’Eramo, A.H. Arevalo, J.J. Silber, L. Sereno, Preparation and electrochemical behavior of conducting films obtained by electropolymerization of benzidine in aqueous media. J. Electroanal. Chem. 382, 85–95 (1995)CrossRefGoogle Scholar
  32. 32.
    F. D’Eramo, J.J. Silber, A.H. Arevalo, L. Sereno, Electrochemical detection of silver ions and the study of metal-polymer interactions on a polybenzidine film electrode. J. Electroanal. Chem. 494, 60–68 (2000)CrossRefGoogle Scholar
  33. 33.
    D. Posadas, M.J. Rodriguez Presa, M.I. Florit, Apparent formal redox potential distribution in electroactive arylamine-derived polymers. Electrochim. Acta 46, 4075–4081 (2001)CrossRefGoogle Scholar
  34. 34.
    X. Lu, W. Zhang, C. Wang, One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog. Polym. Sci. 36, 671–712 (2011)CrossRefGoogle Scholar
  35. 35.
    A. Bekhoukh, A. Zehhaf, A. Benyoucef, S. Bousalem, M. Belbachir, nanoparticules mass effect of ZnO on the properties of poly(4-chloroaniline)/zinc oxide nanocomposites. Inorg. Organomet. Polym. Mater. 27, 13–20 (2017)CrossRefGoogle Scholar
  36. 36.
    C. Paluszkiewicz, M. Holtzer, A. Bobrowski, FTIR analysis of bentonite in moulding sands. J. Mol. Struct. 880, 109–114 (2008)CrossRefGoogle Scholar
  37. 37.
    P. Savitha, D.N. Sathyanarayana, Synthesis and characterization of soluble conducting poly(o-/m-toluidine-co-o-nitroaniline). Synth. Methods 145, 113 (2004)CrossRefGoogle Scholar
  38. 38.
    A.J. Epstein, J.M. Ginder, F. Zuo, W.R. Bigelow, W.S. Woo, D.B. Tanner, A.F. Ritcher, W.S. Huang, A.G. MacDiarmid, Insulator-to-metal transition in polyaniline. Synth. Methods 18, 303–309 (1987)CrossRefGoogle Scholar
  39. 39.
    S. Stafstrom, J.L. Bredas, A.J. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, A.G. MacDiarmid, Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys. Rev. Lett. 59, 1464–1467 (1987)CrossRefGoogle Scholar
  40. 40.
    I. Radja, H. Djelad, E. Morallon, A. Benyoucef, Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth. Methods 202, 25–32 (2015)CrossRefGoogle Scholar
  41. 41.
    A. Ray, A.G. MacDiarmid, J.M. Ginder, A.J. Epstein, Optical studies of polyanilines: effect of alkyl ring substitution and solvent environment. Mater. Res. Soc. Symp. Proc. 173, 353–357 (1990)Google Scholar
  42. 42.
    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Compos. 38, E254–E260 (2017)CrossRefGoogle Scholar
  43. 43.
    A.S. Al-Hussaini, Synthesis and characterization of new thermally stable polymers as new high-performance engineering plastics. High Perform. Polym. 26(2), 166–174 (2014)CrossRefGoogle Scholar
  44. 44.
    A.S. Al-Hussaini, M. Klapper, T. Pakula, K. Müllen, Poly(imino ketone)s as new high-performance polymers. Macromolecules 37(22), 8269–8277 (2004)CrossRefGoogle Scholar
  45. 45.
    P. Carty, in Polymeric Materials Encyclopedia, ed. by J.C. Salamone (CRC, New York, 1996), p. 2422Google Scholar
  46. 46.
    S. Madakbaş, Z. Türk, F. Şen, M.V. Kahraman, Thermal and morphological properties of organo modified nanoclay/polyethylene terephthalate composites. Inorg. Organomet. Polym. Mater. 27, 31–36 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of SciencePort Said UniversityPort SaidEgypt

Personalised recommendations