Advertisement

Influence of TiO2 Incorporation on the Microstructure, Optical, and Dielectric Properties of TiO2/Epoxy Composites

  • A. Bouzidi
  • K. Omri
  • W. Jilani
  • H. Guermazi
  • I. S. Yahia
Article
  • 206 Downloads

Abstract

This study begins with a synthesis and characterization of Epoxy/TiO2 composites (Ep–TiO2–Cs) with different TiO2 fillers. The ultrasonic mixing process was employed to disperse the TiO2 fillers into the epoxy resin matrix. The effect of TiO2 contents on microstructural, optical and electrical properties of the Ep–TiO2–Cs have investigated. Several techniques are now being used to characterize the Ep–TiO2–Cs. The microstructure of fracture surfaces was examined by SEM techniques. It revealed that the as-prepared TiO2 particles are a spherical shape structure. At 5.0 wt% TiO2 fillers, it is evident that these spheres are homogeneously distributed in the epoxy matrix. The XRD study confirms that the particle size generally decreases with increasing the added TiO2 fillers in the epoxy matrix. In the UV-light range, the neat epoxy only blocks UV-light in the range of 200–280 nm, it becomes high UV-light blocker (up to 400 nm) via the addition of TiO2 powder with 5.0 wt% fillers. Moreover, the TiO2 content addition obviously enhanced the UV-Shielding efficiency of the epoxy resin.

Keywords

Composites Microstructure TiO2 Optical properties Dielectric properties 

Notes

Acknowledgements

This study has been supported by the Tunisian Ministry of High Education Scientific Research and Information and Communication Technologies, Tunisia (ICTP through TWAS Grant No. 00-043 RG/PHYS/AF/AC), Higher Education and Scientific Research sector. The authors also are grateful to the Research Center for Advanced Material Science (RCAMS) at King Khalid University, with grant number (RCAMS-1-17-5).

References

  1. 1.
    J.L.H. Chau, C.-T. Tung, Y.-M. Lin, A.-K. Li, Mater. Lett. 62, 3416–3418 (2008)CrossRefGoogle Scholar
  2. 2.
    T.L. Wang, C.C. Yu, C.H. Yang, Y.T. Shieh, Y.Z. Tsai, N.F. Wang, J. Nanomater. 2011, 1–9 (2011)Google Scholar
  3. 3.
    M.Z. Rong, M.Q. Zhang, Y.X. Zheng, H.M. Zeng, R. Walter, K. Friedrich, J. Mater. Sci. Lett. 19, 1159 (2000)CrossRefGoogle Scholar
  4. 4.
    C. Becker, H. Krug, H. Schmidt, Mater. Res. Soc. Symp. Proc. 435, 237 (1996)CrossRefGoogle Scholar
  5. 5.
    G. Carotenuto, L. Nicolais, X. Kuang, Z. Zhu, Appl. Comp. Mater. 2, 385 (1995)CrossRefGoogle Scholar
  6. 6.
    Y. Duan, J. Liu, L. Ma, N. Li, H. Liu, J. Wang, L. Zheng, C. Liu, X. Wang, X. Zhao, J. Yan, S. Wang, H. Wang, X. Zhang, F. Hong, Biomaterials 31, 894–899 (2010)CrossRefGoogle Scholar
  7. 7.
    X. Chang, Y. Xie, J. Wu, M. Tang, B. Wang, J. Nanosci. Nanotechnol. 15(2), 1135–1142 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Tao, Yu Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, J. Mater. Chem. 21, 18623 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Welte, C. Waldauf, C. Brabec, P.J. Wellmann, Thin Solid Films 516, 7256–7259 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Chatterjee, M.S. Islam, Mater. Sci. Eng. A 487, 574–585 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Schneider, A. Baiker, J. Mater. Chem. 2, 587 (1992)CrossRefGoogle Scholar
  12. 12.
    B.E. Yoldas, J. Mater. Sci. 21, 1087 (1986)CrossRefGoogle Scholar
  13. 13.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)CrossRefGoogle Scholar
  14. 14.
    C.C. Wang, J.Y. Ying, Chem. Mater. 11, 3113 (1999)CrossRefGoogle Scholar
  15. 15.
    S.T. Aruna, S. Tirosh, A. Zaban, J. Mater. Chem. 10, 2388 (2000)CrossRefGoogle Scholar
  16. 16.
    L. Shi, C. Li, A.P. Chen, Y.H. Zhu, D.Y. Fang, Mater. Chem. Phys. 66, 51 (2000)CrossRefGoogle Scholar
  17. 17.
    J. Rubio, J.L. Oteo, M. Villegas, P. Duran, J. Mater. Sci. 32, 643 (1997)CrossRefGoogle Scholar
  18. 18.
    D. Rosu, C.N. Cascaval, F. Mustata, C. Ciobanu, Thermochim. Acta 283, 119–127 (2002)CrossRefGoogle Scholar
  19. 19.
    F. Bauer, U. Decker, H. Ernst, M. Findeisenb, H. Langguth, R. Mehnert, V. Sauerland, R. Hinterwaldner, Int. J. Adhes. Adhes. 26, 567 (2006)CrossRefGoogle Scholar
  20. 20.
    Y. Yang, Y.Q. Li, S.Y. Fu, H.M. Xiao, J. Phys. Chem. C 112, 10553–10558 (2008)CrossRefGoogle Scholar
  21. 21.
    Z. Rubab, A. Afzal, H.M. Siddiqi, S. Saeed, Sci. World J. 2014, 1–8 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Bouzidi, K. Omri, L. El Mir, H. Guermazi, Mater. Sci. Semicond. Process. 39, 536–543 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Fujishima, T.N. Rao, D.A. Tryk., J. Photochem. Photobiol. C 1, 1 (2000)CrossRefGoogle Scholar
  24. 24.
    D. Morselli, F. Bondioli, M. Sangermano, I. Roppolo, M. Messori, J. Appl. Polym. Sci. (2014).  https://doi.org/10.1002/APP.40470 Google Scholar
  25. 25.
    J.L.H. Chau, H.W. Liu, W.F. Su, J. Phys. Chem. Solids 70, 1385 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Sowntharya, S. Lavanya, G. Ravi Chandra, N.Y. Hebalkar, R. Subasri, Ceram. Int. 38, 4221 (2012)CrossRefGoogle Scholar
  27. 27.
    K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940–8948 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Kumar, S. Kumar, P. Sharma, V. Sharma, S.C. Katyal, J. Appl. Phys. 112, 1–8 (2012)Google Scholar
  29. 29.
    R. Chauhan, A.K. Srivastava, A. Tripathi, K.K. Srivastava, Prog. Nat. Sci. 21, 205 – 210 (2011)CrossRefGoogle Scholar
  30. 30.
    C.C. Wang, Phys. Rev. B 2, 2045 (1970)CrossRefGoogle Scholar
  31. 31.
    D.Y.S. Luo, J.P. Yang, X.J. Dai, Y. Yang, S.Y. Fu, J. Phys. Chem. C113, 9406 (2009)Google Scholar
  32. 32.
    R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Macromol. Mater. Eng. 288, 44–49 (2003)CrossRefGoogle Scholar
  33. 33.
    D.R. Lide, Handbook of Chemistry and Physics, 76th edn. (CRC Press, Boca Raton, 1995)Google Scholar
  34. 34.
    J. Ederth, P. Johnsson, G. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. Granqvist, A.R. .Doorn, M. Jongerius, D. Burgard, Phys. Rev. B68, 155410 (2003)CrossRefGoogle Scholar
  35. 35.
    Y.S. Luo, J.P. Yang, X.J. Dai, Y. Yang, S.Y. Fu, J. Phys. Chem. C 113, 9406 (2009)CrossRefGoogle Scholar
  36. 36.
    H.C. Huang, T.E. Hsieh, Ceram. Int. 36, 1245 (2010)CrossRefGoogle Scholar
  37. 37.
    J.J. Tang, C.H. Su, J. Jiangsu Univ. Sci. Technol. Nat. Sci. Ed. 23, 125 (2009)Google Scholar
  38. 38.
    S.Hong,E. Kim, D.-W. Kim, T.-H. Sung, K. No, J. Non-Cryst. Solids 221, 245–254 (1997)CrossRefGoogle Scholar
  39. 39.
    P. Singh, A. Kaushal, D. Kaur, J. Alloy. Compd. 471, 11–15 (2009)CrossRefGoogle Scholar
  40. 40.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, (Clarendon, Oxford, 1979) p. 428Google Scholar
  41. 41.
    K. Sharma, M. Lal, A. kumar, N. Goyal, J. Optoelect. Biomed. Mater. 6, 19 (2014)Google Scholar
  42. 42.
    M.A. Omar, Elementary Solid State Physics, (Addison-Wesley Publishing Company, New York, 1993)Google Scholar
  43. 43.
    M. Sesha Reddy, K.T. Rama Krishna Reddy, B.S. Naidu, P.J. Reddy, Opt. Mater. 4, 787–790 (1995)CrossRefGoogle Scholar
  44. 44.
    Q. Shen, K. Katayama, T. Sawada, T. Toyoda, Thin Solid Films 516, 5927–5930 (2008)CrossRefGoogle Scholar
  45. 45.
    F. Lai, L. Lin, R. Gai, Y. Lin, Z. Huang, Thin Solid Films 515, 7387–7392 (2007)CrossRefGoogle Scholar
  46. 46.
    J.I. Gittleman, E.K. Sichel, Y. Arie, Solar Energy Mater. 1, 93–104 (1979)CrossRefGoogle Scholar
  47. 47.
    M.M. El-Desoky, I.M. Morad, M.H. Wasfy, A.F. Mansour, IOSR J. Appl. Phys. 9, 33–43 (2017)Google Scholar
  48. 48.
    S. Sarkar, N.S. Das, K.K. Chattopadhyay, Solid State Sci. 33, 58–66 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Research Unit, Physics of Insulating and Semi Insulating Materials, Faculty of SciencesUniversity of SfaxSfaxTunisia
  2. 2.Technical and Vocational Training Corporation: Technical College BranchAhad RufidahKingdom of Saudi Arabia
  3. 3.Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée à l’Environnement, Faculté des Sciences de GabèsGabèsTunisia
  4. 4.Department of Physics, Faculty of Science Sciences and Arts Dhahran Al JanoubKing Khalid UniversityAbhaKingdom of Saudi Arabia
  5. 5.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaKingdom of Saudi Arabia
  6. 6.Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaKingdom of Saudi Arabia
  7. 7.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations