Paramagnetic Quantum Dots as Multimodal Probes for Potential Applications in Nervous System Imaging

  • Yan Du
  • Karunanithi Rajamanickam
  • Taisa Regina Stumpf
  • Yubo Qin
  • Holly McCulloch
  • Xiuying Yang
  • Jingchang Zhang
  • Eve Tsai
  • Xudong Cao
Article
  • 39 Downloads

Abstract

An axonal tracer that can be detected by both magnetic resonance imaging (MRI) and fluorescence is of great interest for studying nerve regeneration, particularly for spinal cord injury repairs. In this study, we develop a new type of multifunctional nanoparticle that combines three different functionalities of paramagnetism, fluorescence, and axonal tracing into one nanomaterial. We demonstrate that the new synthesized quantum dot nanoparticles have good biocompatibilities and can be readily taken up by cells. In addition, the quantum dots show excellent longitudinal and transverse relaxivities (i.e. r 1  = 11.22 ± 0.10 mM−1 s−1 and r 2  = 24.50 ± 0.51 mM−1 s−1) at 1.5 T, MRI contrast properties better than those of Magnevist®, a commercially available MRI contrast agent. The UV–vis absorbance spectra of all the pQDs-BDA samples indicate that these tracers are stable at different temperatures. Taken together, this new nanomaterial demonstrates good performances for both optical and MR imaging modalities, suggesting its promising potential applications in non-invasive imaging, particularly as a novel multimodal axonal tracer for nervous system imaging.

Keywords

MRI Quantum dots Neurotracers Non-invasive imaging Gadolinium 

Notes

Acknowledgements

TRS wishes to thank the National Council for Scientific and Technological Development (CNPq, Brazil) for financial support of her Ph.D. study. The authors also thank Krystal Walker and Matthew Coyle at Ottawa Hospital Research Institute (OHRI) for their assistance with confocal microscopy.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

10904_2017_766_MOESM1_ESM.docx (140 kb)
Supplementary material 1 (DOCX 139 KB)

References

  1. 1.
    Š. Kubinová, E. Syková, Regen. Med. 7, 207 (2012)CrossRefGoogle Scholar
  2. 2.
    R. Talac, J.A. Friedman, M.J. Moore, L. Lu, E. Jabbari, A.J. Windebank, B.L. Currier, M.J. Yaszemski, Biomaterials 25, 1505 (2004)CrossRefGoogle Scholar
  3. 3.
    E. Oztas, Neuroanatomy 2, 2 (2003)Google Scholar
  4. 4.
    C. Köbbert, R. Apps, I. Bechmann, J.L. Lanciego, J. Mey, S. Thanos, Prog. Neurobiol. 62, 327 (2000)CrossRefGoogle Scholar
  5. 5.
    J.L. LanciegoF., G. Wouterlood, J. Chem. Neuroanat. 42, 157 (2011)CrossRefGoogle Scholar
  6. 6.
    J.C. Glover, G. PetursdottirJ., K.S. Jansen, J. Neurosci. Meth. 18, 243 (1986)CrossRefGoogle Scholar
  7. 7.
    D.M. NanceJ. Burns, Brain Res. Bull. 25, 139 (1990)CrossRefGoogle Scholar
  8. 8.
    C.L. Veenman, A. Reiner, M.G. Honig, J. Neurosci. Meth. 41, 239 (1992)CrossRefGoogle Scholar
  9. 9.
    A. Reiner, C.L. Veenman, L. Medina, Y. Jiao, N. Del Mar, M.G. Honig, J. Neurosci. Meth. 103, 23 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Puigdellívol-Sánchez, A. Valero-Cabré, A. Prats-Galino, X.N.C. Molander, J. Neurosci. Meth. 115, 115 (2002)CrossRefGoogle Scholar
  11. 11.
    E.C. Tsai, R.L. Van Bendegem, S.W. Hwang, C.H. Tator, J. Histochem. Cytochem. 49, 1111 (2001)CrossRefGoogle Scholar
  12. 12.
    D.L. Sparks, L.-F. Lue, T.A. Martin, J. Rogers, J. Neurosci. Meth. 103, 3 (2000)CrossRefGoogle Scholar
  13. 13.
    C.S. Von Bartheld, D.E. Cunningham. E.W. Rubel, J. Histochem. Cytochem. 38, 725 (1990)CrossRefGoogle Scholar
  14. 14.
    L. Schmued, K.K.L. Heimer, Brain Res. 526, 127 (1990)CrossRefGoogle Scholar
  15. 15.
    H.M. Brandt, A.V. Apkarian, J. Neurosci. Meth. 45, 35 (1992)CrossRefGoogle Scholar
  16. 16.
    A.J.M. Boulton, Diab. Care 30, 2752 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Bozzo, J. Marcoux, M. Radhakrishna, J. Pelletier, B. Goulet, J. Neurotraum. 28, 1401 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Modo, M. Hoehn, J.W. Bulte, Mol. Imaging 4, 143 (2005)CrossRefGoogle Scholar
  19. 19.
    S.M. Willerth, S.E. Sakiyama-Elbert, Adv. Drug. Deliv. Rev. 60, 263 (2008)CrossRefGoogle Scholar
  20. 20.
    S.L. Rossi. H.S. Keirstead, Curr. Opin. Biotechnol. 20, 552 (2009)CrossRefGoogle Scholar
  21. 21.
    L. Urdzikova, P. Jendelova, K. Glogarova, M. Burian, M. Hajek, E. Sykova, J. Neurotrauma 23, 1379 (2006)CrossRefGoogle Scholar
  22. 22.
    L. Jing, K. Ding, S.V. Kershaw, I.M. Kempson, A.L. Rogach, M. Gao, Adv. Mater. 26, 6367 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Cheon, J.-H. Lee, Acc. Chem. Res. 41, 1630 (2008)CrossRefGoogle Scholar
  24. 24.
    C. Burtea, S. Laurent, L. Vander Elst, R.N. Muller, Handb. Exp. Pharmacol. 135 (2008)Google Scholar
  25. 25.
    D.L. Thorek, A.K. Chen, J. Czupryna, A. Tsourkas, Ann. Biomed. Eng. 34, 23 (2006)CrossRefGoogle Scholar
  26. 26.
    Y. Du, Y. Qin, Z. Li, X. Yang, J. Zhang, H. Westwick, E. Tsai, X. Cao, J. Biol. Inorg. Chem. 22, 1305 (2017)CrossRefGoogle Scholar
  27. 27.
    I.F. Li, C.-S. Yeh, J. Mater. Chem. 20, 2079 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Zheng, Y. Zou, J. Jiang, Mater. Lett. 168, 86 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Zhang, T.-T. Sun, Y. Zhang, Q. Li, C. Chai, L. Lu, W. Shen, J. Yang, X.-W. He, Y.-K. Zhang, W.-Y. Li, J. Mater. Chem. B 2, 7201 (2014)CrossRefGoogle Scholar
  30. 30.
    G. Pandey, S. Dixit, A.K. Shrivastava, Mater. Sci. Eng. B 200, 59 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Liu, K. Ai, Q. Yuan, L. Lu, Biomaterials 32, 1185 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Modo, J.S. Beech, T.J. Meade, S.C.R. Williams, J. Price, NeuroImage 47, (Supplement 2), T133 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Sureshkumar, B. Jothimani, T.M. Sridhar, B. Venkatachalapathy, Rsc. Adv. 6, 16081 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Jiang, Z. Shen, C. Luo, H. Lin, R. Huang, Y. Wang, H. Peng, Talanta 155, 14 (2016)CrossRefGoogle Scholar
  35. 35.
    F.J. Nicholls, M.W. Rotz, H. Ghuman, K.W. MacRenaris, T.J. Meade, M. Modo, Biomaterials 77, 291 (2016)CrossRefGoogle Scholar
  36. 36.
    Z. Li, A. Dergham, H. McCulloch, Y. Qin, X. Yang, J. Zhang, X. Cao, J. Biol. Inorg. Chem. 22, 1151 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Mishra, R. Joshi, J. Engelmann, N.K. Logothetis, ACS Chem. Neurosci. 3, 268 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Zhang, G.Y. Hao, C.F. Yao, S. Hu, C.H. Hu, B.B. Zhang, J. Mater. Chem. B 4, 4110 (2016)CrossRefGoogle Scholar
  39. 39.
    X.H. Xing, B.B. Zhang, X.H. Wang, F.J. Liu, D.L. Shi, Y.S. Cheng, Biomaterials 48, 16 (2015)CrossRefGoogle Scholar
  40. 40.
    W.J.M. Mulder, R. Koole, R.J. Brandwijk, G. Storm, P.T.K. Chin, G.J. Strijkers, C. de Mello Donegá, K. Nicolay, A.W. Griffioen, Nano Lett. 6, 1 (2006)CrossRefGoogle Scholar
  41. 41.
    B.B. Zhang, X.Q. Gong, L.J. Hao, J. Cheng, Y. Han, J. Chang, Nanotechnology. 19, (2008)Google Scholar
  42. 42.
    R. Koole, M.M. van Schooneveld, J. Hilhorst, K. Castermans, D.P. Cormode, G.J. Strijkers, C. de Mello Donegá, D. Vanmaekelbergh, A.W. Griffioen, K. Nicolay, Z.A. Fayad, A. Meijerink, W.J.M. Mulder, Bioconjug. Chem. 19, 2471 (2008)CrossRefGoogle Scholar
  43. 43.
    K.A. Granath, J. Coll. Sci. 13, 308 (1958)CrossRefGoogle Scholar
  44. 44.
    A.V. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, J. Colloid Interf. Sci. 309, 194 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Zhu, U. Panne, K. Rurack, Analyst 138, 2924 (2013)CrossRefGoogle Scholar
  46. 46.
    W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 16, 560 (2004)CrossRefGoogle Scholar
  47. 47.
    J.F. Galloway, A. Winter, K.H. Lee, J.H. Park, C.M. Dvoracek, P. Devreotes, P.C. Searson, Nanomed. Nanotechnol. 8, 1190 (2012)CrossRefGoogle Scholar
  48. 48.
    E. Bernard, M. Beking, K. Rajamanickam, E. Tsai, M. DeRosa, J. Biol. Inorg. Chem. 17, 1159 (2012)CrossRefGoogle Scholar
  49. 49.
    S. Hak, H.M.H.F. Sanders, P. Agrawal, S. Langereis, H. Grüll, H.M. Keizer, F. Arena, E. Terreno, G.J. Strijkers, K. Nicolay, Eur. J. Pharm. Biopharm. 72, 397 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Albanese, P.S. Tang, W.C. Chan, Ann. Rev. Biomed. Eng. 14, 1 (2012)CrossRefGoogle Scholar
  51. 51.
    I. Nabiev, S. Mitchell, A. Davies, Y. Williams, D. Kelleher, R. Moore, Y.K. Gun’ko, S. Byrne, Y.P. Rakovich, J.F. Donegan, A. Sukhanova, J. Conroy, D. Cottell, N. Gaponik, A. Rogach, Y. Volkov, Nano Lett. 7, 3452 (2007)CrossRefGoogle Scholar
  52. 52.
    E. Cassette, M. Helle, L. Bezdetnaya, F. Marchal, B. Dubertret, T. Pons, Adv. Drug. Deliv. Rev. 65, 719 (2013)CrossRefGoogle Scholar
  53. 53.
    R.G. Thorne, C. Nicholson, Proc. Natl. Acad. Sci. 103, 5567 (2006)CrossRefGoogle Scholar
  54. 54.
    H.S. Choi, W. Liu, F. Liu, K. Nasr, P. Misra, M.G. Bawendi, J.V. Frangioni, Nat. Nanotechnol. 5, 42 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Yan Du
    • 1
  • Karunanithi Rajamanickam
    • 2
  • Taisa Regina Stumpf
    • 1
  • Yubo Qin
    • 1
  • Holly McCulloch
    • 1
  • Xiuying Yang
    • 3
  • Jingchang Zhang
    • 3
  • Eve Tsai
    • 2
  • Xudong Cao
    • 1
    • 4
  1. 1.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  2. 2.Department of NeurosurgeryOttawa Hospital Research InstituteOttawaCanada
  3. 3.Hainan Institute of Science and TechnologyHaikouChina
  4. 4.Ottawa Carleton Institute of Biomedical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations