Effect of Li4Ti5O12 Nanoparticles on Structural, Optical and Thermal Properties of PVDF/PEO Blend

  • F. H. Abd El-kader
  • N. A. Hakeem
  • R. S. Hafez
  • A. M. Ismail
Article
  • 125 Downloads

Abstract

Lithium titanate nanoparticles Li4Ti5O12 NPs were prepared by the solid-state reaction method using a stoichiometric ratio of lithium carbonate Li2CO3 and titanium oxide nanoparticles TiO2 NPs. X-ray diffraction (XRD) analysis confirmed the formation of Li4Ti5O12 NPs. High-resolution transmission electron microscope showed like—cube shape of Li4Ti5O12 NPs with an average particle size 42 nm. Poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) (80/20 wt/wt%) blend doped with concentrations 0.5, 0.7, 1.0, 2.0, 5.0 and 7.0 wt% of Li4Ti5O12 NPs were prepared using casting technique. Structural, optical and thermal properties of polymer nanocomposites were investigated using XRD, high-resolution scanning electron microscope (HRSEM), energy dispersive spectrophotometer (EDS), Fourier transform infrared (FT-IR), ultraviolet–visible spectroscopy (UV–Vis) and differential scanning calorimetry (DSC). The XRD and FT-IR data showed that there was an interaction between the blend sample and Li4Ti5O12 NPs. Also, the addition of Li4Ti5O12 NPs decreased the degree of crystallinity of the blend sample. HRSEM images revealed that the presence of Li4Ti5O12 NPs changed the surface morphology of the nanocomposites and gave rise to crystalline domains up to 5 wt% Li4Ti5O12 NPs, then deteriorations was occurred.

Keywords

Li4Ti5O12 nanoparticles XRD HRTEM FT-IR DSC 

References

  1. 1.
    A.G. Supri, M.D. SitiHajar, M.P.M. Hanif, Effect of type of conductive fillers and poly(ethylene glycol) diglycidyl ether on the electrical conductivity and morphology properties of poly(vinyl chloride)/poly(ethylene oxide) conductive films. Polym. Bull. 73, 2831 (2016)CrossRefGoogle Scholar
  2. 2.
    O. Abdullah, D. Saber, L. Hamasalih, Complexion formation in PVA/PEO/CuCl2 solid polymer electrolyte. Univers. J. Mater. Sci. 3, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    K. Hemalatha, H. Somashekarappa, R. Somashekar, Preparation and characterization of MMT doped PVA/SA polymer composites. Adv. Mater. Phys. Chem. 4, 172 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, C. Sanjeeviraja, Conductivity and dielectric properties of polyvinyl alcohol–polyvinyl pyrrolidone poly blend film using non-aqueous medium. J. Non-Cryst. Solids 357, 3751 (2011)CrossRefGoogle Scholar
  5. 5.
    E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10, 607 (2010)CrossRefGoogle Scholar
  6. 6.
    D.S. Rana, D.K. Chaturvedi, J.K. Quamara, Morphology, crystalline structure, and chemical properties of 100 MeV Ag-ion beam irradiated polyvinylidene fluoride (PVDF) thin film. J. Optoelectron. Adv. Mater. 11, 705 (2009)Google Scholar
  7. 7.
    F. Liu, Y.-Y. Xu, B.-K. Zhua, F. Zhanga, L.-P. Zhu, Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes. J. Membr. Sci. 345, 331 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 1 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Rajabzadeh, T. Maruyama, Y. Ohmukai, T. Sotani, H. Matsuyama, Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method,Sep. Purif. Technol. 66, 76 (2009)CrossRefGoogle Scholar
  10. 10.
    K.N. Kumar, B.H. Rudramadevi, S. Buddhudu, Energy transfer based photoluminescence spectra of Dy3+, Sm3+: PEO + PVP polymer films. Indian J. Pure Appl. Phys. 52, 588 (2014)Google Scholar
  11. 11.
    A.M. Abdelghany, M.S. Meikhail, N.A. Elsheshtawy, H.Y. Salah, Structural and thermal stabilization correlation of PEO/PVA-AgCl polymer composites. Middle East J. Appl. Sci. 5, 1 (2015)Google Scholar
  12. 12.
    Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithiumion batteries. J. Mater. Chem. A 3, 19218 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Sionkowska, Photochemical stability of collagen/poly(ethylene oxide) blends. J. Photochem. Photobiol. A 177, 61 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Ramesh, T.F. Yuen, C.J. Shen, Conductivity and FTIR studies on PEO–LiX [X: CF3SO3 , SO4 2–] polymer electrolytes. Spectrochim. Acta A 69, 670 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Ganesan, B. Muthuraaman, V. Mathew, M.K. Vadivel, P. Maruthamuthua, M. Ashokkumarb, S.A. Suthanthiraraj, Influence of 2,6(N-pyrazolyl) isonicotinic acid on the photovoltaic properties of a dye-sensitized solar cell fabricated using poly(vinylidenefluoride) blended with poly(ethylene oxide) polymer electrolyte. Electrochim. Acta 56, 8811 (2011)CrossRefGoogle Scholar
  16. 16.
    M.M.E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104, 267 (1997)CrossRefGoogle Scholar
  17. 17.
    H. Zhang, X. Xuan, J. Wang, H.Wang, Effect of poly(vinylidene fluoride) on solvation of NaSCN in PEO. Spectrochim. Acta A 61, 347 (2005)CrossRefGoogle Scholar
  18. 18.
    L. Lee, S.-J. Park, S. Kim, Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234, 19 (2013)CrossRefGoogle Scholar
  19. 19.
    I.S. Elashmawi, N.H. Elsayed, R.A.S. Alatawi, PEO/PVDF nanocomposites preparation with functionalized single walled carbon nanotube. Int. J. Nano Mater. Sci 4, 24 (2015)Google Scholar
  20. 20.
    L.H. Gaabour, Thermal spectroscopy and kinetic studies of PEO/PVDF loaded by carbon nanotubes. J. Mater. 2015, 1 (2015)CrossRefGoogle Scholar
  21. 21.
    A.N. Ananth, S. Umapathy, J. Sophia, T. Mathavan, D. Mangalaraj, On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl. Nanosci. 1, 87 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Ghanipour, D. Dorranian, Effect of Ag-Nanoparticles Doped in Polyvinyl Alcohol on the Structural and Optical Properties of PVA Films., J. Nanomater. 2013, 1 (2013)CrossRefGoogle Scholar
  23. 23.
    A.k.. Abbas, R.M. Naife, F.L. Rashid, A. Hashim, Optical properties of (PVA-PAA-Ag) nanocomposites. Int. J. Sci. Res. 4, 2489 (2015)Google Scholar
  24. 24.
    S. Clémenson, L. David, E. Espuche, Structure and morphology of nanocomposite films prepared from polyvinyl alcohol and silver nitrate: influence of thermal treatment. J. Polym. Sci. A 45, 2657 (2007)CrossRefGoogle Scholar
  25. 25.
    H.M. Alhusiki-Alghamdi, N.S. Alghunaim, Spectroscopic studies of nanocomposites based on PEO/PVDF blend loaded by SWCNTs. J. Mod. Phys. 6, 414 (2015)CrossRefGoogle Scholar
  26. 26.
    T. Ohtake, Single phase Li4Ti5O12 synthesis for nanoparticles by two steps sintering. J. Mater. Sci. Chem. Eng. 3, 5 (2015)Google Scholar
  27. 27.
    T. Ohtake, K. Iijima, Li4Ti5O12 synthesis with high specific surface area and single phase,J. Mater. Sci. Chem. Eng. 3, 68 (2015)Google Scholar
  28. 28.
    C. Hong, A. Noviyanto, J. Ryu, J. Kim, D.Yoon, Effects of the starting materials and mechanochemical activation on the properties of solid-state reacted Li4Ti5O12 for lithium ion batteries. Ceram. Int. 38, 301 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Wang, J. Wang, F. Wang, S. Li, J. Xiao, PVDF based all-organic composite with high dielectric constant. Polym. Bull. 60, 647 (2008)CrossRefGoogle Scholar
  30. 30.
    W. Ma, J. Zhang, S. Chen, X. Wang, Crystallization behavior and hydrophilicity of poly(vinylidene fluoride) (PVDF)/poly(styrene-co-acrylonitrile) (SAN) blends. Colloid. Polym. Sci. 286, 1193 (2008)CrossRefGoogle Scholar
  31. 31.
    M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.M. Blom, D.M. de Leeuw, Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater. 12, 433 (2013)CrossRefGoogle Scholar
  32. 32.
    K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R.N. Rao, Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B 406, 1706 (2011)CrossRefGoogle Scholar
  33. 33.
    K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. NarasimhaRao, Investigations on PEO/PVP/NaBrcomplexed polymer blend electrolytes for electrochemical cell applications. J. Membr. Sci. 454, 200 (2014)CrossRefGoogle Scholar
  34. 34.
    V. Vetrivel, Dr..K. Rajendran, V. Kalaiselvi, Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method. Int. J. ChemTech Res. 7, 1090 (2015)Google Scholar
  35. 35.
    W. Liu, Y. Wang, X. Jia, B. Xia, The characterization of lithium titanate microspheres synthesized by a hydrothermal method. J. Chem. 2013, 1 (2013)Google Scholar
  36. 36.
    M. Senna, M. Fabián, L. Kavan, M. Zukalová, J. Briančin, E. Turianicová, P. Bottke, M. Wilkening, V. Šepelák, Electrochemical properties of spinel Li4Ti5O12 nanoparticles prepared via a low-temperature solid route. J. Solid State Electrochem. 20, 2673 (2016)CrossRefGoogle Scholar
  37. 37.
    I.S. Elashmawi, N.H. Elsayed, F.A. Altalhi, The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles. J. Alloys Compd. 617, 877 (2014)CrossRefGoogle Scholar
  38. 38.
    H. Bai, X. Wang, Y. Zhou, L. Zhang, Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci. 22, 250 (2012)CrossRefGoogle Scholar
  39. 39.
    N. Gondaliya, D.K. Kanchan, P. Sharma, P. Joge, Structural and conductivity studies of poly(Ethylene oxide) – silver triflate polymer electrolyte system. Mater. Sci. Appl. 2, 1639 (2011)Google Scholar
  40. 40.
    S.M. Pawde, K. Deshmukh, Investigation of the structural, thermal, mechanical, and optical properties of poly(methyl methacrylate) and poly(vinylidene fluoride) blends. J. Appl. Polym. Sci. 114, 2169 (2009)CrossRefGoogle Scholar
  41. 41.
    I.S. Elashmawi, N.A. Hakeem, Effect of PMMA addition on characterization and morphology of PVDF. Polym. Eng. Sci. 48, 895 (2008)CrossRefGoogle Scholar
  42. 42.
    W.B. De Almedia, L.R.A. Costa, H.F. Dos Santos, M.C. Zerner, A theoretical investigation of the near UV and VIS electronic spectra for the fully deprotonated forms of anhydrotetracycline. J. Chem. Soc. Perkin Trans. 2, 7, 1335 (1997)CrossRefGoogle Scholar
  43. 43.
    B. Sharma, S.V. Bykov, S.A. Asher, UV resonance Raman Investigation of electronic transitions in α-helical and polyproline ii-like conformations. J. Phys. Chem. B 112, 11762 (2008)CrossRefGoogle Scholar
  44. 44.
    F.H. Abd El-kader, N.A. Hakeem, I.S. Elashmawi, A.M. Ismail, Structural, optical and thermal characterization of ZnO nanoparticles doped in PEO/PVA blend films. Aust. J. Basic Appl. Sci. 7, 608 (2013)Google Scholar
  45. 45.
    F. Urbach, The Long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  46. 46.
    J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B.S. Ince, M. Jenkins, J. Pan, M. Reveley, N. Washington, N. Wolchover, Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47, 2411 (2006)CrossRefGoogle Scholar
  47. 47.
    O.W. Guirguis, M.T.H. Moselhey, Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Nat. Sci. 4, 57 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • F. H. Abd El-kader
    • 1
  • N. A. Hakeem
    • 2
  • R. S. Hafez
    • 1
  • A. M. Ismail
    • 2
  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Physics Division, Spectroscopy DepartmentNational Research CentreGizaEgypt

Personalised recommendations