Advertisement

Interaction Studies of Ammonia Gas Molecules on Borophene Nanosheet and Nanotubes: A Density Functional Study

  • V. Nagarajan
  • R. Chandiramouli
Article

Abstract

The structural stability of borophene nanosheet and nanotubes, including electronic properties was explored using the density-functional-theory technique. Moreover, the stability of isolated pristine borophene nanosheet and nanotube is substantiated with the help of formation energy. The energy band gap of pristine borophene material is found to be semi-metallic. The interaction of NH3 molecules on borophene material is analyzed using Bader charge transfer, adsorption energy, density-of-states spectrum, energy band gap and percentage of average-energy-gap variation. The interaction of hazardous NH3 gas molecules on borophene nanosheet and nanotubes is studied at an atomistic level. The interaction of nitrogen atom in ammonia molecules on borophene material is observed to be the prominent adsorption site. The findings suggest that borophene nanosheets as well as nanotubes can be used as a chemi-resistor for the detection of ammonia molecules present in the atmosphere.

Graphical Abstract

Keywords

Borophene Adsorption Nanosheet Nanotube Ammonia Stability 

Supplementary material

10904_2017_761_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1572 KB)

References

  1. 1.
    A. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  2. 2.
    A.R. Oganov, J. Chen, C. Gatti, Y.-Z. Ma, Y.-M. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Ionic high-pressure form of elemental boron. Nature 457 863–867 (2009)CrossRefGoogle Scholar
  3. 3.
    N. Vast, S. Baroni, G. Zerah, J.M. Besson, A. Polian, M. Grimsditch, J.C. Chervin, Lattice dynamics of icosahedral α-boron under pressure. Phys. Rev. Lett. 78, 693 (1997)CrossRefGoogle Scholar
  4. 4.
    H. Tang, I.B. Sohrab, First-principles study of boron sheets and nanotubes. Phys. Rev. B 82, 115412 (2010)CrossRefGoogle Scholar
  5. 5.
    A.J. Mannix, X.F. Zhou, B. Kiraly, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)CrossRefGoogle Scholar
  6. 6.
    X. Yang, Y. Ding, J. Ni, Ab initio prediction of stable boron sheets and boron anotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402 (2008)CrossRefGoogle Scholar
  7. 7.
    B.J. Feng, J. Zhang, Q. Zhong, W.B. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K.H. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016)CrossRefGoogle Scholar
  8. 8.
    I. Boustani, A. Quandt, Nanotubes of bare boron clusters: ab initio and density functional study. Europhys. Lett. 39, 527–532 (1997)CrossRefGoogle Scholar
  9. 9.
    I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997)CrossRefGoogle Scholar
  10. 10.
    B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. USA 102, 961–964 (2005)CrossRefGoogle Scholar
  11. 11.
    E. Oger, N.R.M. Crawford, R. Kelting, P. Weis, M.M. Kappes, R. Ahlrichs, Boron cluster cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46, 8503–8506 (2007)CrossRefGoogle Scholar
  12. 12.
    A.K. Singh, A. Sadrzadeh, B.I. Yakobson, Probing properties of boron R-tubes by ab initio calculations. Nano Lett. 8, 1314–1317 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Sun, Q. Li, X.G. Wana, First-principles study of thermal properties of borophene. Phys. Chem. Chem. Phys. 18, 14927 – 14932 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, S. Zeng, N. Jun, Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93, 014502 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, A.Y. Shengyuan, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Liu, C. Shen, Z. Su, X. Ding, S. Deng, J. Chen, N. Xu, H. Gao, Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Ciuparu, R.F. Klie, Y. Zhu, L. Pfefferle, Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  19. 19.
    R. Chandiramouli, First-principles insights on adsorption properties of NH3 on silicane nanoribbon and nanoring. Appl. Surf. Sci. 426, 1221–1231 (2017)CrossRefGoogle Scholar
  20. 20.
    V. Nagarajan, R. Chandiramouli, Investigation on electronic properties of functionalized arsenene nanoribbon and nanotubes: a first-principles study. Chem. Phys. 495, 35–41 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Rubio, J. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)CrossRefGoogle Scholar
  22. 22.
    R.T. Senger, S. Dag, S. Ciraci, Chiral single-wall gold nanotubes. Phys. Rev. Lett. 93, 196807 (2004)CrossRefGoogle Scholar
  23. 23.
    V. Bezugly, J. Kunstmann, B. Grundkotter-Stock, T. Frauenheim, T. Niehaus, G. Cuniberti, Highly conductive boron nanotubes: transport structural stabilities. ACS Nano 5, 4997–5005 (2011)CrossRefGoogle Scholar
  24. 24.
    V. Nagarajan, R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol: a first-principles study. Comput. Theor. Chem. 1105, 52–60 (2017)CrossRefGoogle Scholar
  25. 25.
    V. Nagarajan, R. Chandiramouli, Sensing properties of monolayer borophane nanosheet towards alcohol vapors: a first-principles study. J. Mol. Graph. Modell. 73, 208–216 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Bibi, H. Ullah, S.M. Ahmad, H.A. Shah, S. Bilal, A.A. Tahir et al., Molecular and electronic structure elucidation of polypyrrole gas sensors. J. Phys. Chem. C 119(28), 15994–16003 (2015)CrossRefGoogle Scholar
  27. 27.
    H. Ullah, A.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Ullah, K. Ayub, Z. Ullah, M. Hanif, R. Nawaz, A.A. Shah et al., Theoretical insight of polypyrrole ammonia gas sensor. Synth. Methods 172, 14–20 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Ullah, A.A. Shah, S. Bilal, K. Ayub, Doping and dedoping processes of polypyrrole: DFT study with hybrid functionals. J. Phys. Chem. C 118, 17819–17830 (2014)CrossRefGoogle Scholar
  30. 30.
    H. Ullah, A.A. Shah, K. Ayub, S. Bilal, Density functional theory study of poly(o-phenylenediamine) oligomers. J. Phys. Chem. C 117, 4069–4078 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Kamran, H. Ullah, A. Anwar-ul-Haq, S. Shah, A.A. Bilal, K. Tahir, Ayub, Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer. Polymer 72, 30–39 (2015)CrossRefGoogle Scholar
  32. 32.
    Z. Fazl-i-Sattar, A. Ullah Ata-ur-Rahman, M. Rauf, A.A. Tariq, K. Tahir, H. Ayub, Ullah, Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases. Spectrochim. Acta A 141, 71–79 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Ullah, A.A. Tahir, T.K. Mallick, Polypyrrole/TiO2 composites for the application of photocatalysis. Sens. Actuators B 241, 1161–1169 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Ullah, Inter-molecular interaction in polypyrrole/TiO2: a DFT study. J.Alloys Compd. 692, 140–148 (2017)CrossRefGoogle Scholar
  35. 35.
    A.A. Peyghan, H. Soleymanabadi, Z. Bagheri, Hydrogen release from NH3 in the presence of BN graphene: DFT studies‏. J. Mex. Chem. Soc. 59(1), 67–73 (2015)Google Scholar
  36. 36.
    A.A. Peyghan, S.F. Rastegar, N.L. Hadipour, DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys. Lett. A 378, 2184–2190 (2014)CrossRefGoogle Scholar
  37. 37.
    A.A. Peyghan, M.B. Tabar, J. Kakemam, NH3 on a BC3 nanotube: effect of doping and decoration of aluminum. J. Mol. Model. 19, 3793–3798 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Beheshtian, A.A. Peyghan, Z. Bagheri, Ab initio study of NH3 and H2O adsorption on pristine and Na-doped MgO nanotubes. Struct. Chem. 24, 165–170 (2013)CrossRefGoogle Scholar
  39. 39.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745 (2002)CrossRefGoogle Scholar
  40. 40.
    G. Roman-Perez, J.M. Soler, Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009)CrossRefGoogle Scholar
  41. 41.
    J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533 (1996)CrossRefGoogle Scholar
  42. 42.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms,molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)CrossRefGoogle Scholar
  43. 43.
    L. Li, P. Jin, D.-E. Jiang, L. Wang, S.B. Zhang, J. Zhao, Z.J. Chen, B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functionals. Chem. Phys. 136(7), 074302 (2012)Google Scholar
  44. 44.
    R. Bader, Atoms in Molecules: A Quantum Theory. (Oxford University Press, New York, 1990)Google Scholar
  45. 45.
    V. Nagarajan, R. Chandiramouli, Interaction of alcohols on monolayer stanane nanosheet: a first-principles investigation. Appl. Surf. Sci. 419, 9–15 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Yuan, L.W. Zhang, K.M. Liew, Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons. RSC Adv. 5, 74399–74407 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016)CrossRefGoogle Scholar
  48. 48.
    J. Beheshtian, M. Noei, H. Soleymanabadi, A.A. Peyghan, Ammonia monitoring by carbon nitride nanotubes: a density functional study. Thin Solid Films 534, 650–654 (2013)CrossRefGoogle Scholar
  49. 49.
    A. Ullah Ata-ur-Rahman, Z. Fazl-i-Sattar, A. Rauf, M. Yaseen, W. Hassan, M. Tariq, K. Ayub, A.A. Tahir, H. Ullah, Density functional theory and phytochemical study of 8-hydroxyisodiospyrin. J. Mol. Struct. 1095, 69–78 (2015)CrossRefGoogle Scholar
  50. 50.
    A.A. Javad Beheshtian, N.L. Hadipour, Interaction of NH3 with aluminum nitride nanotube: electrostatic vs. covalent. Physica E 43, 1717–1719 (2011)CrossRefGoogle Scholar
  51. 51.
    J. Beheshtian, I. Ravaei, Toxic CO detection by Li-encapsulated fullerene-like BeO. Struct. Chem. (2017).  10.1007/s11224-017-1022-z Google Scholar
  52. 52.
    M. Eslami, V. Vahabi, A.A. Peyghan, Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Physica E 76, 6–11 (2016)CrossRefGoogle Scholar
  53. 53.
    V. Nagarajan, R. Chandiramouli, Interaction of NH3 gas on α-MoO3 nanostructures: a DFT investigation. Condens. Matter Phys. 20, 23705 (2017)CrossRefGoogle Scholar
  54. 54.
    M. Noei, A.A. Peyghan, A DFT study on the sensing behavior of a BC2N nanotube toward formaldehyde. J. Mol. Model. 19, 3843–3850 (2013)CrossRefGoogle Scholar
  55. 55.
    H. Ullah, A.-H.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)CrossRefGoogle Scholar
  56. 56.
    R. Chandiramouli, B.G. Jeyaprakash, Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv. 5, 43930–43940 (2015)CrossRefGoogle Scholar
  57. 57.
    A.S. Kootenaei, G. Ansari, B36 borophene as an electronic sensor for formaldehyde: quantum chemical analysis. Phys. Lett. A 380, 2664–2668 (2016)CrossRefGoogle Scholar
  58. 58.
    B. Mortazavi, A. Dianat, O. Rahaman, G. Cuniberti, T. Rabczuk, Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. J. Power Sources 329, 456–461 (2016)CrossRefGoogle Scholar
  59. 59.
    V. Nagarajan, R. Chandiramouli, Adsorption of NO2 molecules on armchair phosphorene nanosheet for nano sensor applications: a first-principles study. J. Mol. Graph. Modell. 75, 365–374 (2017)CrossRefGoogle Scholar
  60. 60.
    J. Beheshtian, A.A. Peyghan, Z. Bagheri, Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase. J. Mol. Model. 19, 833–837 (2013)CrossRefGoogle Scholar
  61. 61.
    R. Chandiramouli, V. Nagarajan, Borospherene nanostructure as CO and NO sensor: a first-principles study. Vacuum 142, 13–20 (2017)CrossRefGoogle Scholar
  62. 62.
    S. Bibi, H. Ullah, S.M. Ahmad, A.-H.A. Shah, S. Bilal, A.A. Tahir, K. Ayub, Molecular and electronic structure elucidation of polypyrrole gas sensors. J. Phys. Chem. C 119, 15994–16003 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Electrical and Electronics EngineeringSASTRA UniversityThanjavurIndia

Personalised recommendations