Advertisement

An Unusual Bi-arsenic Capped Well-Dawson Arsenomolybdate Hybrid Supramolecular Material with Photocatalytic Property and Anticancer Activity

  • Pengju Lv
  • Jie Yuan
  • Kai Yu
  • Jihong Shen
Article

Abstract

An bi-arsenic capped Well-Dawson arsenomolybdates supramolecular material, formulated as, {pyr}{Hbib}2{AsIII 2(OH)2AsV 2Mo18O62} (1) (pyr = pyrrole; bib = 1, 4-bis(1-imidazoly)benzene) has been hydrothermally synthesized and characterized by elemental analysis, IR, TG, UV, XRD, and single-crystal X-ray diffraction. In the structure of 1, {As2Mo18O62} (abbreviated to {As2Mo18}) polyanions are capped by two disordered AsIII units which are distributed in six symmetric ditches of the {Mo3O13} group on two poles of the Dawson cluster with the occupation ratio of 0.5 and 0.25, respectively. Two kinds of caps: pyramidal-shaped {AsO3} and tetrahedron {AsO3(OH)} caps are formed via the combination of three u-O atoms from Dawson cluster or the same three u-O atoms and one hydroxyl with As centers. Compound 1 represents a brand new bi-capped Dawson structure, which shows good photocatalytic behaviors for degradation of recalcitrant dyes Azon Phloxine (AP). Moreover, compound 1 exhibits an effective inhibition effect on proliferation of Human hepatoma cells (HepG-2) for the synergetic effect of Dawson cluster and AsIII cap.

Keywords

Supramolecular {As2Mo18Photocatalytic properties Anticancer activity 

Notes

Acknowledgements

This work was supported the National Natural Science Foundation of China (Grants Nos. 21371042, 21571044, and 21771046), the Natural Science Foundation of Heilongjiang Province (ZD2015001 and JJ2016JQ0037).

Supplementary material

10904_2017_760_MOESM1_ESM.doc (3.1 mb)
Supplementary material 1 (DOC 3211 KB)

References

  1. 1.
    K. Kaviyarasu, K. John, E. Manikandan, H. Mohamed, M. Maaza, Sci. Rep. 6, 38064 (2016)CrossRefGoogle Scholar
  2. 2.
    K. Kaviyarasu, C. Maria Magdalane, E. Manikandan, M. Jayachandran, R. Ladchumananandasivam, S. Neelamani, M. Maaza, Int. J. Nanosci 14(03), 1550007 (2015)CrossRefGoogle Scholar
  3. 3.
    S.K. Jesudoss, J.J. Vijaya, P.I. Rajan, K. Kaviyarasu, M. Sivachidambaram, L.J. Kennedy, H.A. Al-Lohedane, R. Jothiramalingam, Photochem. Photobiol Sci. 16(5), 766 (2017)CrossRefGoogle Scholar
  4. 4.
    X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, M. Maaza, Mater. Res. Bull. 97, 457 (2018)CrossRefGoogle Scholar
  5. 5.
    C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, M. Maaza, J. Alloys Compd. 727, 1324 (2017)CrossRefGoogle Scholar
  6. 6.
    X.J. Kang, D.M. Yang, P.A. Ma, Y.L. Dai, M.M. Shang, D.L. Geng, Z.Y. Cheng, J. Lin, Langmuir 29(4), 1286 (2013)CrossRefGoogle Scholar
  7. 7.
    N. Jayaprakash, J.J. Vijaya, K. Kaviyarasu, K. Kombaiah, L.J. Kennedy, R.J. Ramalingam, M.A. Munusamy, H.A. Al-Lohedan, J. Photochem. Photobiol. B 169, 178 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Kaviyarasu, A. Mariappan, K. Neyvasagam, A. Ayeshamariam, P. Pandi, R. Rajeshwara Palanichamy, C. Gopinathan, G.T. Mola, M. Maaza, Surf. Interfaces 6, 247 (2017)CrossRefGoogle Scholar
  9. 9.
    C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, C. Jayakumar, M. Maaza, B. Jeyaraj, J. Photochem. Photobiol. B 169, 110 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Kaviyarasu, K. Kanimozhi, N. Matinise, C.M. Magdalane, G.T. Mola, J. Kennedy, M. Maaza, Mater. Sci. Eng. C 76, 1012–1025Google Scholar
  11. 11.
    K. Kaviyarasu, N. Geetha, K. Kanimozhi, C.M. Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, M. Maaza, Mater. Sci. Eng. C 74, 325–333 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Wojtyła, W. Macyk, T. Baran, Photochem. Photobiol. Sci. 16, 1079 (2017)CrossRefGoogle Scholar
  13. 13.
    C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Photochem. Photobiol. B 173, 23 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Kaviyarasu, C.M. Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E.S. Reddy, N.K. Rotte, C.S. Sharma, F.T. Thema, D. Letsholathebe, G.T. Mola, M. Maaza, J. Photochem. Photobiol. B 173, 466 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara, S. Yamanaka, Angew. Chem. 46, 7625 (2007)CrossRefGoogle Scholar
  16. 16.
    S.J. Luo, Y.N. Chi, L.N. Sun, Q. Wang, C.W. Hu, Catal. Commun. 9, 2560 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Piera, J.E. Backvall, Angew. Chem. 47, 3506 (2008)CrossRefGoogle Scholar
  18. 18.
    B. Artetxe, S. Reinoso, L.S. Felices, L. Lezama, J.M. Gutiérrez-Zorrilla, J.A. García, J.R. Galán-Mascarós, A. Haider, U. Kortz, C. Vicent, Chem. Eur. J. 20, 12144 (2014)CrossRefGoogle Scholar
  19. 19.
    M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112, 782 (2012)CrossRefGoogle Scholar
  20. 20.
    R.B. Getman, Y.S. Bae, C.E. Wilmer, R.Q. Snurr, Chem. Rev. 112, 703 (2012)CrossRefGoogle Scholar
  21. 21.
    Q. Wu, J. Wang, L. Zhang, A. Hong, J. Ren, Angew. Chem. 117, 4116 (2005)CrossRefGoogle Scholar
  22. 22.
    J.Y. Niu, G. Chen, J.W. Zhao, P.T. Ma, S.Z. Li, J.P. Wang, M.X. Li, Y. Bai, B.S. Ji, Chem. Eur. J. 16, 7082 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Xu, H.Y. Zhang, E.B. Wang, D.G. Kurth, Z. Li, J. Mater. Chem. 12, 654 (2002)CrossRefGoogle Scholar
  24. 24.
    J. Lu, J.X. Lin, X.L. Zhao, R. Cao, Chem. Commun. 48, 669 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Lv, J.X. Lin, X.L. Zhao, R. Cao, Chem. Commun. 48, 669 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Nishiki, N. Umehara, Y. Kadota, X. López, J.M. Poblet, C.A. Mezui, A.L. Teillout, I.M. Mbomekalle, P. Oliveira, M. Miyamoto, T. Sanoa, M. Sadakane, Dalton Trans. 45, 3715 (2016)CrossRefGoogle Scholar
  27. 27.
    J.J. Walsh, C.T. Mallon, A.M. Bond, T.E. Keyes, R.J. Forster, Chem. Commun. 48, 3593 (2012)CrossRefGoogle Scholar
  28. 28.
    P.C. Yin, C.P. Pradeep, B.F. Zhang, F.Y. Li, C. Lydon, M.H. Rosnes, D. Li, E. Bitterlich, L. Xu, L. Cronin, T. Liu, Chem. Eur. J. 18, 8157 (2012)CrossRefGoogle Scholar
  29. 29.
    P.G. Reddy, N. Mamidi, C.P. Pradeep, CrystEngComm 18, 4272 (2016)CrossRefGoogle Scholar
  30. 30.
    J.Q. Sha, P.P. Zhu, X.Y. Yang, N. Sheng, J.S. Li, L.J. Sun, H. Yan, CrystEngComm 18, 7049 (2016)CrossRefGoogle Scholar
  31. 31.
    Y.Y. Yang, L. Xu, L.P. Jia, G.G. Gao, F.Y. Li, X.S. Qu, Y.F. Qiu, Cryst. Res. Technol. 10, 42 (2007)Google Scholar
  32. 32.
    T. Soumahoro, E. Burkholder, W. Ouellette, J. Zubieta, Inorg. Chim. Acta 358, 606 (2005)CrossRefGoogle Scholar
  33. 33.
    H.H. Yu, X. Zhang, L. Kong, J.Q. Xu, Acta Cryst E65, 1698 (2009)Google Scholar
  34. 34.
    H.H. Cai, J.H. Lü, K. Yu, H. Zhang, C.M. Wang, L. Wang, B.B. Zhou, Inorg. Chem. Comm. 62, 24 (2015)CrossRefGoogle Scholar
  35. 35.
    P.J. Lv, W.W. Cao, K. Yu, J.H. Shen, Inorg. Chem. Comm. 79, 95 (2017)CrossRefGoogle Scholar
  36. 36.
    F.R. Li, J.H. Lv, K. Yu, H. Zhang, C.M. Wang, C.X. Wang, B.B. Zhou, CrystEngComm 19, 2320 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, K. Yu, C.M. Wang, Z.H. Su, C.X. Wang, D. Sun, H.H. Cai, Z.Y. Chen, B.B. Zhou, Inorg. Chem. 53, 12337 (2014)CrossRefGoogle Scholar
  38. 38.
    H.S. Huang, W.C. Chang, C.J. Chen, Free Radic. Biol. Med. 33, 864 (2002)CrossRefGoogle Scholar
  39. 39.
    C.G. Yedjou, P.B. Tchounwou, Metal Ions Biol. Med. 9, 293 (2006)Google Scholar
  40. 40.
    F. Pu, E.B. Wang, H.Y. Jiang, J.S. Ren, Mol. BioSyst. 9, 113 (2013)CrossRefGoogle Scholar
  41. 41.
    G.M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement. (University of Göttingen, Göttingen, 1997)Google Scholar
  42. 42.
    G.M. Sheldrick, SHELXL97, Program for Crystal Structure Solution. (University of Göttingen, Göttingen, 1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of AutomationHarbin Engineering UniversityHarbinChina
  2. 2.Harbin Medical UniversityDaqingChina
  3. 3.School of Chemistry and Chemical EngineeringHarbin Normal UniversityHarbinChina

Personalised recommendations