Anticancer Activity of Tamoxifen Loaded Tyrosine Decorated Biocompatible Fe3O4 Magnetic Nanoparticles Against Breast Cancer Cell Lines

Article

Abstract

In this work we reported the synthesis of tamoxifen (TMX) loaded l-tyrosine natural amino acids (Tyr) modified Fe3O4 magnetic nanoparticles. Tyr, which was containing phenol groups was selected to study their effects on biocompatibility, loading capacity and release profile of TMX. TMX loaded Tyr modified Fe3O4 magnetic nanoparticles (F@Tyr@TMX NPs) were characterized by X-ray diffraction, thermo gravimetric analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometer, dynamic light scattering and transmission electron microscopy techniques. The results showed that the ζ-potential of F@Tyr@TMX NPs was about − 12.8 mV and the average size was 22.19 ± 3.58 [mean ± SD (n = 50)] nm. The loading capacity of 11.34 ± 0.09% and encapsulation efficiency of 51.21 ± 0.41%. Additionally, hemolysis test and MTT assays on HEK-293 were performed for determination of biocompatibility of F@Tyr@TMX NPs. Finally, the anticancer activity of F@Tyr@TMX NPs studied on MCF-7 breast cancer cell lines. The results indicate that these as prepared magnetic nanoparticles are suitable for delivery of TMX and even other hydrophobic drugs.

Graphical Abstract

Keywords

Magnetic nanoparticles l-Tyrosine Cancer Drug delivery Tamoxifen Hemolysis 

Notes

Acknowledgements

This work has been supported financially by Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran (Grant No, A-12-966-10).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    H. Danafar, K. Rostamizadeh, S. Davaran, M. Hamidi, Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG–PCLNanoparticles. Drug Dev. Ind. Pharm. 43, 1908–1918 (2017)Google Scholar
  2. 2.
    M. Harper, A. Walpole, A new derivative of triphenylethylene: effect on implantation and mode of action in rats. J. Reprod. Fertil. 13, 101–119 (1967)CrossRefGoogle Scholar
  3. 3.
    H. Danafar, H. Manjili, M. Najafi, Study of copolymer composition on drug loading efficiency of enalapril in polymersomes and cytotoxicity of drug loaded nanoparticles. Drug res. 66, 495–504 (2016)Google Scholar
  4. 4.
    F. Gharebaghi, N. Dalali, E. Ahmadi, H. Danafar, Preparation of wormlike polymeric nanoparticles coated with silica for delivery of methotrexate and evaluation of anticancer activity against MCF7 cells. J. Biomater. Appl. 31, 1305–1316 (2017)Google Scholar
  5. 5.
    H. Danafar, Applications of copolymeric nanoparticles in drug delivery systems. Drug res. 66, 506–519 (2016)Google Scholar
  6. 6.
    H. Kheiri Manjili, A. Sharafi, E. Attari, H. Danafar, Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL–PEG–PCL copolymeric-based micelles. Artif. Cells Nanomed. Biotechnol. 45, 1728–1739 (2017)Google Scholar
  7. 7.
    M. Rostami, M. Aghajanzadeh, M. Zamani, H.K. Manjili, H. Danafar, Sono-chemical synthesis and characterization of Fe3O4@ mTiO2-GO nanocarriers for dual-targeted colon drug delivery. Res. Chem. Intermediat. (2017).  ​https://doi.org/10.1007/s11164-017-3204-0
  8. 8.
    H. Danafar, A. Sharafi, S. Askarlou, H.K. Manjili, Preparation and characterization of PEGylated iron oxide-gold nanoparticles for delivery of sulforaphane and curcumin. Drug Res. 67, 698–704 (2017)Google Scholar
  9. 9.
    A. Shaabani, H. Nosrati, M. Seyyedhamzeh, Cellulose@ Fe2O3 nanoparticle composites: magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo [1, 2-a] pyridines. Res. Chem. Intermed. 41, 3719–3727 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Shaabani, M.B. Boroujeni, M.S. Laeini, Copper (ii) supported on magnetic chitosan: a green nanocatalyst for the synthesis of 2, 4, 6-triaryl pyridines by C–N bond cleavage of benzylamines. RSC Adv. 6, 27706–27713 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, S. Davaran, Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artifi. Cells Nanomed. Biotechnol. 45, 6–17 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Pan, X. Du, F. Zhao, B. Xu, Magnetic nanoparticles for the manipulation of proteins and cells. Chem. Soc. Rev. 41, 2912–2942 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Mahmoudi, V. Serpooshan, S. Laurent, Engineered nanoparticles for biomolecular imaging. Nanoscale 3, 3007–3026 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Arami, A. Khandhar, D. Liggitt, K.M. Krishnan, In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Zamani, M. Rostami, M. Aghajanzadeh, H.K. Manjili, K. Rostamizadeh, H. Danafar, Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J. Mat. Sci.​ 53, 1634–1645 (2017)Google Scholar
  16. 16.
    H. Nosrati, M. Salehiabar, S. Davaran, A. Ramazani, H. Kheiri Manjili, H. Danafar, New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res. Chem. Intermed. 43, 7423–7442 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Danafar, Study of the composition of polycaprolactone/poly (ethylene glycol)/polycaprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles. Jundishapur J. Nat. Pharmaceut. Prod. 12, e34179  (2017).  https://doi.org/10.5812/jjnpp.34179
  18. 18.
    M. Rostami, R.M. Zamani, K.M. Aghajanzadeh, H. Danafar, Sol–gel synthesis and characterization of zinc ferrite–graphene nano-hybrids for photo-catalytic degradation of the paracetamol. J. Pharmaceut. Invest. (2017).  ​https://doi.org/10.1007/s40005-017-0362-4
  19. 19.
    H. Nosrati, M. Salehiabar, H.K. Manjili, H. Danafar, S. Davaran, Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol. (2017).  https://doi.org/10.1016/j.ijbiomac.2017.10.180
  20. 20.
    M. Martín, P. Salazar, R. Villalonga, S. Campuzano, J.M. Pingarrón, J.L. González-Mora, Preparation of core–shell Fe 3 O 4@ poly (dopamine) magnetic nanoparticles for biosensor construction. J. Mater. Chem. B 2, 739–746 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Nosrati, M. Salehiabar, E. Attari, S. Davaran, H. Danafar, H.K. Manjili, Green and one-pot surface coating of iron oxide magnetic nanoparticles (IONPs) with natural amino acids and its biocompatibility investigation. Appl. Organomet. Chem. (2017).  https://doi.org/10.1002/aoc.4069 Google Scholar
  22. 22.
    M. Salehiabar, H. Nosrati, S. Davaran, H. Danafar, H.K. Manjili, Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res. (2017).  https://doi.org/10.1055/s-0043-120197 Google Scholar
  23. 23.
    M. Sousa, J. Rubim, P. Sobrinho, F. Tourinho, Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J. Magn. Magn. Mater. 225, 67–72 (2001)CrossRefGoogle Scholar
  24. 24.
    J.Y. Park, E.S. Choi, M.J. Baek, G.H. Lee, Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid. Mater. Lett. 63, 379–381 (2009)CrossRefGoogle Scholar
  25. 25.
    D. Patel, Y. Chang, G.H. Lee, Amino acid functionalized magnetite nanoparticles in saline solution. Curr. Appl. Phys. 9, S32-S34 (2009)CrossRefGoogle Scholar
  26. 26.
    S.P. Schwaminger, P.F. García, G.K. Merck, F.A. Bodensteiner, S. Heissler, S. Günther, S. Berensmeier, Nature of interactions of amino acids with bare magnetite nanoparticles. J. Phys. Chem. C 119, 23032–23041 (2015)CrossRefGoogle Scholar
  27. 27.
    K. Pušnik, M. Peterlin, I. Kralj-Cigic, G. Marolt, K. Kogej, A. Mertelj, S. Gyergyek, D. Makovec, Adsorption of amino acids, aspartic acid and lysine onto iron-oxide nanoparticles. J. Phys. Chem. C 120, 14372–14381 (2016)Google Scholar
  28. 28.
    M. Rahimi, S. Shojaei, K.D. Safa, Z. Ghasemi, R. Salehi, B. Yousefi, V. Shafiei-Irannejad, Biocompatible magnetic tris (2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J. Chem. 41, 2160–2168 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Nomani, H. Nosrati, H.K. Manjili, L. Khesalpour, H. Danafar, Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res. 67, 458–465 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Durmus, H. Kavas, M.S. Toprak, A. Baykal, T.G. Altınçekiç, A. Aslan, A. Bozkurt, S. Coşgun, l-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J. Alloy. Compd. 484, 371–376 (2009)CrossRefGoogle Scholar
  31. 31.
    M.M. Yallapu, S.F. Othman, E.T. Curtis, N.A. Bauer, N. Chauhan, D. Kumar, M. Jaggi, S.C. Chauhan, Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomed. 7, 1761 (2012)Google Scholar
  32. 32.
    H. Qu, H. Ma, W. Zhou, C.J. O’Connor, In situ surface functionalization of magnetic nanoparticles with hydrophilic natural amino acids. Inorg. Chim. Acta 389, 60–65 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical Biomaterials, School of PharmacyZanjan University of Medical SciencesZanjanIran
  2. 2.Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical SciencesZanjanIran
  3. 3.Cancer Gene Therapy Research Center, Faculty of MedicineZanjan University of Medical SciencesZanjanIran

Personalised recommendations