Skip to main content
Log in

Ilex paraguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Single-crystal 15 nm size magnetite nanoparticles were synthesized and coated with Yerba Mate (Ilex paraguariensis) extract to evaluate their use as versatile antioxidant magnetic nanoadsorbents. The obtained particles, Mnp@YM, were found to be composed of a crystalline magnetite core surrounded by a shell composed of Fe3O4, FeO, and Fe2O3 oxides. YM extract resulted an effective protective coating for Mnp incorporating surface carboxylates, phenols, and organic N groups which improve the particles stability in aqueous suspensions. Mnp@YM antioxidant capacity (1.8 µM Trolox equivalent per 0.1 mg YM coating contained in 1 mgL− 1 particle suspension) is of the order reported for polyphenols. \({\text{S}}{{\text{O}}_{\text{4}}}^{{ \cdot - }}\) scavenging rate constant (1.5 × 104 g− 1 L s− 1) is within the diffusion controlled regime for 15 nm spherical nanoparticles with homogeneously distributed reactive sites. Mnp@YM reversibly adsorbs MB with maximum adsorption of 50 mg g− 1. As a consequence of these capacities, Mnp@YM resulted effective in preventing MB oxidation by peroxodisulfate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Ai et al., Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198, 282–290 (2011)

    Article  CAS  Google Scholar 

  2. O.A. Attallah et al., Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv., 6(14), 11461–11480 (2016). https://doi.org/10.1039/C5RA23452B

    Article  CAS  Google Scholar 

  3. P. Avetta et al., Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-fenton-like conditions. Environ. Sci. Technol. 49(2), 1043–1050 (2015)

    Article  CAS  Google Scholar 

  4. W.J. Barreto, S. Regina, G. Barreto, Iron oxide and pyrocatechol: a spectroscopy study of the reaction products. Quim. Nov 29(6), 1255–1258 (2006)

    Article  CAS  Google Scholar 

  5. D.H.M. Bastos et al., Phenolic antioxidants identified by ESI-MS from yerba maté (Ilex paraguariensis) and green tea (Camellia sinensis) extracts. Molecules 12(3), 423–432 (2007)

    Article  CAS  Google Scholar 

  6. K.G. Bhattacharya, A. Sharma, Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica) leaf powder. Dyes Pigm. 65(1), 51–59 (2005)

    Article  Google Scholar 

  7. L. Bravo, L. Goya, E. Lecumberri, LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res. Int. 40(3), 393–405 (2007)

    Article  CAS  Google Scholar 

  8. G.V. Buxton, T.N. Malone, & G.A. Salmon. Reaction of SO4− with Fe2+, Mn2+ and Cu2+ in aqueous solution. J. Chem. Soc. Faraday Trans. 93(16), 2893–2897 (1997). https://doi.org/10.1039/A701472D

    Article  CAS  Google Scholar 

  9. W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370 (2007)

    Article  CAS  Google Scholar 

  10. Q. Chaudhry, R. Watkins, L. Castle, Nanotechnologies in the food arena: new opportunities, new questions, new concerns. in Nanotechnologies in Food, ed. by Q. Chaudhry, C. Laurence, R. Qasim (Springer, Berlin, 2010), pp. 1–17

    Chapter  Google Scholar 

  11. E.D. Cömert, V. Gökmen, Antioxidants bound to an insoluble food matrix: their analysis, regeneration behavior, and physiological importance. Compr. Rev. Food Sci. Food Saf. (2017). https://doi.org/10.1111/1541-4337.12263

    Google Scholar 

  12. R.M. Cornell & U. Schwertmann, The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses. 2nd edn. (Wiley-VCH Verlag, Weinheim, 2003). Available at http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Iron+Oxides+in+the+Laboratory#3

  13. S.E. Favela-Camacho et al., Stability of magnetite nanoparticles with different coatings in a simulated blood plasma. J. Nanoparticle Res. 18(7), 176 (2016). https://doi.org/10.1007/s11051-016-3482-2

    Article  Google Scholar 

  14. A. Ghauch et al., Methylene blue discoloration by heated persulfate in aqueous solution. Chem. Eng. J. 213, 259–271 (2012)

    Article  CAS  Google Scholar 

  15. P.R. Ginimuge, Methylene Blue 26(4), 517–520 (2017)

    Google Scholar 

  16. X.H. Guan, C. Shang, G.H. Chen, ATR-FTIR investigation of the role of phenolic groups in the interaction of some NOM model compounds with aluminum hydroxide. Chemosphere 65(11), 2074–2081 (2006)

    Article  CAS  Google Scholar 

  17. S. Gunasekaran, G. Sankari, S. Ponnusamy, Vibrational spectral investigation on xanthine and its derivatives—Theophylline, caffeine and theobromine. Spectrochimica Acta 61(1–2), 117–127 (2005)

    Article  CAS  Google Scholar 

  18. C.I. Heck, E.G. De Mejia, Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 72(9), (2007)

  19. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd Edn. (CRC Press, New York, 1997). Available at https://www.crcpress.com/Principles-of-Colloid-and-Surface-Chemistry-Third-Edition-Revised-and/Hiemenz-Rajagopalan/9780824793975#googlePreviewContainer

  20. J.-D. Hu et al., Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci. Total Environ. 408(16), 3477–3489 (2010). Available at https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953703572&partnerID=40&md5=020aac6b78f74e159a17a96cfc1b6d99

  21. A.M. Jubb, H.C. Allen, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces 2(10), 2804–2812 (2010)

    Article  CAS  Google Scholar 

  22. H. Jung, D.B. Kittelson, M.R. Zachariah, The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combust. Flame 142(3), 276–288 (2005)

    Article  CAS  Google Scholar 

  23. G. Magnacca et al., Novel magnetite nanoparticles coated with waste-sourced biobased substances as sustainable and renewable adsorbing materials. ACS Sustain. Chem. Eng. 2(6), 1518–1524 (2014). https://doi.org/10.1021/sc500213j

    Article  CAS  Google Scholar 

  24. D.F. Mercado et al., Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis. ACS Appl. Mater. Interfaces 6, 3937–3946 (2014)

    Article  CAS  Google Scholar 

  25. D.F. Mercado Castro, M.C. Gonzalez, F.H. Sánchez, Yerba Mate applications: magnetic response of powders and colloids of magnetite nanoparticles coated with Ilex Paraguariensis derivatives. (2017) (under review)

  26. V.C. Mora et al., Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere 75(10), 1405–1409 (2009)

    Article  CAS  Google Scholar 

  27. H. Muthukumar, M. Matheswaran, Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng. 3(12), 3149–3156 (2015)

    Article  CAS  Google Scholar 

  28. T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. J. Colloid Interface Sci. 433, 104–114 (2014). https://doi.org/10.1016/j.jcis.2014.07.019

    Article  CAS  Google Scholar 

  29. Nist, NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012), http://srdata.nist.gov/xps/

  30. M. Rafatullah et al., Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177(1–3), 70–80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  Google Scholar 

  31. M. Rafatullah et al., Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177(1–3), 70–80 (2010)

    Article  CAS  Google Scholar 

  32. C. Rice-Evans et al., The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22(4), 375–383 (1995)

    Article  CAS  Google Scholar 

  33. J.A. Rosso et al., Reaction of sulfate and phosphate radicals with α,α,α-trifluorotoluene. J. Chem. Soc. Perkin Trans. 2 2, 205–210 (1999)

    Article  Google Scholar 

  34. M. Rudolph, J. Erler, U.A. Peuker, A TGA-FTIR perspective of fatty acid adsorbed on magnetite nanoparticles-Decomposition steps and magnetite reduction. Colloids Surf. A 397, 16–23 (2012)

    Article  CAS  Google Scholar 

  35. S.P. Schwaminger et al., Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm 19(2), 246–255 (2017). Available at http://xlink.rsc.org/?DOI=C6CE02421A

  36. C. Socaci et al., Developing novel strategies for the functionalization of core-shell magnetic nanoparticles with folic acid derivatives. Mater. Chem. Phys. 162, 131–139 (2015). Available at https://doi.org/10.1016/j.matchemphys.2015.05.046

    Article  CAS  Google Scholar 

  37. K. Song et al., Comprehensive design of carbon-encapsulated Fe3O4 nanocrystals and their lithium storage properties. Nanotechnology 23(50), 505401 (2012). Available at http://www.ncbi.nlm.nih.gov/pubmed/23186940

  38. C. Su, Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J. Hazard. Mater. 322, 48–84 (2017). Available at http://www.sciencedirect.com/science/article/pii/S030438941630615X

  39. E. Tombácz et al., Magnetite in aqueous medium: coating its surface and surface coated with it. Rom. Rep. Phys. 58(3), 281–286 (2006)

    Google Scholar 

  40. S. Trifunschi et al., Determination of flavonoid and polyphenol compounds in Viscum album and Allium Sativum extracts. Int. Curr. Pharm. J. 4, 382–385 (2015)

    Article  Google Scholar 

  41. M.A. Vieira et al., Phenolic acids and methylxanthines composition and antioxidant properties of mate (Ilex paraguariensis) residue. J. Food Sci. 75(3), 280–285 (2010)

    Article  Google Scholar 

  42. L.S. Villata et al., One-electron oxidation of antioxidants : a kinetic-thermodynamic correlation. Redox Rep. 18(5), 205–209 (2013). Available at http://hdl.handle.net/11336/5237

  43. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)

    Article  CAS  Google Scholar 

  44. L. Zhang, R. He, H.C. Gu, Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253(5), 2611–2617 (2006)

    Article  CAS  Google Scholar 

  45. X. Zhang et al., Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf. A 435, 85–90 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DFM thanks Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) for a graduate studentship. MCG and PC are research members of CONICET, LSV is a research member from CICPBA, Argentina.

Funding

This study was supported by grant PICT 2012-1795 from ANPCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica C. Gonzalez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10904_2017_757_MOESM1_ESM.docx

Online Resource—List of reactants, description of standard equipment and methods, HRTEM micrographs, XRD patterns, Raman spectra, XPS O1s and Fe2p peaks, depletion of ABTS+•, absorption experiments, and estimation of the particles molar mass and diffusion controlled rate constants is provided (DOCX 36080 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado, D.F., Caregnato, P., Villata, L.S. et al. Ilex paraguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant. J Inorg Organomet Polym 28, 519–527 (2018). https://doi.org/10.1007/s10904-017-0757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0757-8

Keywords

Navigation