Skip to main content
Log in

A Computational Study of the Adsorptive Removal of H2S by MOF-199

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Metal–organic framework material MOF-199 is a new type of adsorption material for removal toxic H2S. In this work, the effects of temperature and pressure on the performance of H2S adsorption in MOF-199 were studied by using the grand canonical Monte Carlo (GCMC) simulation; the interaction mechanism between framework atoms of MOF-199 and guest H2S molecules were further discussed through density functional theory (DFT) calculations. It is found that the MOF-199 adsorption capacity towards H2S decreases with increasing temperature and increases with increasing pressure. At low pressures, the frameworks containing the binding sites of copper dimers and trimesic acid are the main factor affecting the adsorption performance of MOF-199. While at high pressures, the free volume of MOF-199 contributes to the adsorption capacity as well. The adsorptive interactions between H2S and the organic ligand are weak (>− 14.469 kJ/mol). When H2S adsorption on the Cu–Cu bridge, the binding energies of the modes where hydrogen is put inward of the copper dimer are generally smaller than that where hydrogen is outward, whereas the adsorption on the top of copper ion shows the smallest BEs value (<− 50 kJ/mol) due to its tendency of forming a saturated six-coordinated configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.P. Chang, Z.Y. Zhang, X.R. Ren, F. Li, K.C. Xie, Energy Fuels 23, 762 (2009)

    Article  CAS  Google Scholar 

  2. I. Ahmed, S.H. Jhung, J. Hazard. Mater 301, 259 (2016)

    Article  CAS  Google Scholar 

  3. Y. Belmabkhout, N. Heymans, G. De Weireld, A. Sayari, Energy Fuels 25, 1310 (2011)

    Article  CAS  Google Scholar 

  4. L. Li, D.L. King, Catal. Today 116, 537 (2006)

    Article  CAS  Google Scholar 

  5. L. Hamon, H. Leclerc, A. Ghoufi, L. Oliviero, A. Travert, J.C. Lavalley, T. Devic, C. Serre, G. Férey, J. Phys. Chem. C 115, 2047 (2011)

    Article  CAS  Google Scholar 

  6. A. Samokhvalov, B.J. Tatarchuk, Catal. Rev. 52, 381 (2010)

    Article  CAS  Google Scholar 

  7. N.A. Khan, Z. Hasan, S.H. Jhung, Adv. Porous Mater. 1, 91 (2013)

    Article  CAS  Google Scholar 

  8. Z.P. Chen, L.X. Ling, B.J. Wang, H.L. Fan, J. Shangguan, J. Mi, Appl. Surf. Sci. 387, 483 (2016)

    Article  CAS  Google Scholar 

  9. X.X. Wu, V. Schwartz, S.H. Overbury, T.R. Armstrong, Energy Fuels 19, 1774 (2005)

    Article  CAS  Google Scholar 

  10. R.H. Shi, Z.R. Zhang, H.L. Fan, T. Zhen, J. Shangguan, J. Mi, Appl. Surf. Sci. 394, 394 (2017)

    Article  Google Scholar 

  11. C. Laborde-Boutet, G. Joly, A. Nicolaos, M. Thomas, P. Magnoux, Ind. Eng. Chem. Res. 45, 6758 (2006)

    Article  CAS  Google Scholar 

  12. J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Nat. Mater. 8, 331 (2009)

    Article  CAS  Google Scholar 

  13. J. Liu, Y. Wang, A.I. Benin, P. Jakubczak, R.R. Willis, M.D. LeVan, Langmuir 26, 14301 (2010)

    Article  CAS  Google Scholar 

  14. H.H. Wu, Q.H. Gong, D.H. Olson, J. Li, Chem. Rev. 112, 836 (2012)

    Article  CAS  Google Scholar 

  15. D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 48, 7502 (2009)

    Article  CAS  Google Scholar 

  16. C. Petit, B. Mendoza, T.J. Bandosz, Chem. Phys. Chem. 11, 3678 (2010)

    Article  CAS  Google Scholar 

  17. Y. Liu, J. Liu, M. Chang, C.G. Zheng, J. Phys. Chem. C 116, 16985 (2012)

    Article  CAS  Google Scholar 

  18. W. Mu, D.H. Liu, C.L. Zhong, Microporous Mesoporous Mater 143, 66 (2011)

    Article  CAS  Google Scholar 

  19. L.M. Wu, J. Xiao, Y. Wu, S.K. Xian, G. Miao, H.H. Wang, Z. Li, Langmuir 30, 1080 (2014)

    Article  CAS  Google Scholar 

  20. Y. Li, L.J. Wang, H.L. Fan, J. Shangguan, H. Wang, J. Mi, Energy Fuels 29, 298 (2014)

    Article  Google Scholar 

  21. X.L. Wang, H.L. Fan, Z. Tian, E.Y. He, J. Shangguan, Appl. Surf. Sci. 289, 107 (2014)

    Article  CAS  Google Scholar 

  22. C. Zhiping, Taiyuan University of Technology, Taiyuan (2016)

  23. B. Supronowicz, A. Mavrandonakis, T. Heine, J. Phys. Chem. C 117, 14570 (2013)

    Article  CAS  Google Scholar 

  24. K. Schlichte, T. Kratzke, S. Kaskel, Microporous Mesoporous Mater 73, 81 (2004)

    Article  CAS  Google Scholar 

  25. L. Hamon, E. Jolimaître, G.D. Pringruber, Ind. Eng. Chem. Res. 49, 7497 (2010)

    Article  CAS  Google Scholar 

  26. S.K. Nath, J. Phys. Chem. B 107, 9498 (2003)

    Article  CAS  Google Scholar 

  27. Q.Y. Yang, C.L. Zhong, J. Phys. Chem. B 110, 17776 (2006)

    Article  CAS  Google Scholar 

  28. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.M. Millam, Gaussian 09, Revision A. 02 (Gaussian Inc., Wallingford CT, 2003)

    Google Scholar 

  29. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)

    Article  CAS  Google Scholar 

  30. Q.Y. Yang, C.L. Zhong, Chem. Phys. Chem. 7, 1417 (2006)

    Article  CAS  Google Scholar 

  31. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skid, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  Google Scholar 

  32. L. Grajciar, P. Nachtigall, O. Bludský, M. Rubeš, J. Chem. Theor. Comput. 11, 230 (2014)

    Article  Google Scholar 

  33. J. Liu, Y.F. Wu, F. Xu, J. Xiao, Q.B. Xia, Z. Li, J. Chem. Eng. 67, 1942 (2016)

    CAS  Google Scholar 

  34. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987)

    Google Scholar 

  35. J. Yu, L.H. Xie, J.R. Li, Y.G. Ma, J.M. Seminario, P.B. Balbuena, Chem. Rev. (2017)

Download references

Acknowledgements

Financial supports from National Nature Science Fundamental (21576180) and from the Key Projects of National Natural Science Foundation of China (21736007) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HY., Zhang, ZR., Yang, C. et al. A Computational Study of the Adsorptive Removal of H2S by MOF-199. J Inorg Organomet Polym 28, 694–701 (2018). https://doi.org/10.1007/s10904-017-0740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0740-4

Keywords

Navigation