A Computational Study of the Adsorptive Removal of H2S by MOF-199

  • Hong-Yan Zhang
  • Zhen-Rong Zhang
  • Chao Yang
  • Li-Xia Ling
  • Bao-Jun Wang
  • Hui-Ling Fan
Article
  • 118 Downloads

Abstract

Metal–organic framework material MOF-199 is a new type of adsorption material for removal toxic H2S. In this work, the effects of temperature and pressure on the performance of H2S adsorption in MOF-199 were studied by using the grand canonical Monte Carlo (GCMC) simulation; the interaction mechanism between framework atoms of MOF-199 and guest H2S molecules were further discussed through density functional theory (DFT) calculations. It is found that the MOF-199 adsorption capacity towards H2S decreases with increasing temperature and increases with increasing pressure. At low pressures, the frameworks containing the binding sites of copper dimers and trimesic acid are the main factor affecting the adsorption performance of MOF-199. While at high pressures, the free volume of MOF-199 contributes to the adsorption capacity as well. The adsorptive interactions between H2S and the organic ligand are weak (>− 14.469 kJ/mol). When H2S adsorption on the Cu–Cu bridge, the binding energies of the modes where hydrogen is put inward of the copper dimer are generally smaller than that where hydrogen is outward, whereas the adsorption on the top of copper ion shows the smallest BEs value (<− 50 kJ/mol) due to its tendency of forming a saturated six-coordinated configuration.

Keywords

Adsorption MOF-199 H2GCMC simulation DFT calculation 

Notes

Acknowledgements

Financial supports from National Nature Science Fundamental (21576180) and from the Key Projects of National Natural Science Foundation of China (21736007) are gratefully acknowledged.

References

  1. 1.
    L.P. Chang, Z.Y. Zhang, X.R. Ren, F. Li, K.C. Xie, Energy Fuels 23, 762 (2009)CrossRefGoogle Scholar
  2. 2.
    I. Ahmed, S.H. Jhung, J. Hazard. Mater 301, 259 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Belmabkhout, N. Heymans, G. De Weireld, A. Sayari, Energy Fuels 25, 1310 (2011)CrossRefGoogle Scholar
  4. 4.
    L. Li, D.L. King, Catal. Today 116, 537 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Hamon, H. Leclerc, A. Ghoufi, L. Oliviero, A. Travert, J.C. Lavalley, T. Devic, C. Serre, G. Férey, J. Phys. Chem. C 115, 2047 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Samokhvalov, B.J. Tatarchuk, Catal. Rev. 52, 381 (2010)CrossRefGoogle Scholar
  7. 7.
    N.A. Khan, Z. Hasan, S.H. Jhung, Adv. Porous Mater. 1, 91 (2013)CrossRefGoogle Scholar
  8. 8.
    Z.P. Chen, L.X. Ling, B.J. Wang, H.L. Fan, J. Shangguan, J. Mi, Appl. Surf. Sci. 387, 483 (2016)CrossRefGoogle Scholar
  9. 9.
    X.X. Wu, V. Schwartz, S.H. Overbury, T.R. Armstrong, Energy Fuels 19, 1774 (2005)CrossRefGoogle Scholar
  10. 10.
    R.H. Shi, Z.R. Zhang, H.L. Fan, T. Zhen, J. Shangguan, J. Mi, Appl. Surf. Sci. 394, 394 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Laborde-Boutet, G. Joly, A. Nicolaos, M. Thomas, P. Magnoux, Ind. Eng. Chem. Res. 45, 6758 (2006)CrossRefGoogle Scholar
  12. 12.
    J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Nat. Mater. 8, 331 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Liu, Y. Wang, A.I. Benin, P. Jakubczak, R.R. Willis, M.D. LeVan, Langmuir 26, 14301 (2010)CrossRefGoogle Scholar
  14. 14.
    H.H. Wu, Q.H. Gong, D.H. Olson, J. Li, Chem. Rev. 112, 836 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 48, 7502 (2009)CrossRefGoogle Scholar
  16. 16.
    C. Petit, B. Mendoza, T.J. Bandosz, Chem. Phys. Chem. 11, 3678 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, J. Liu, M. Chang, C.G. Zheng, J. Phys. Chem. C 116, 16985 (2012)CrossRefGoogle Scholar
  18. 18.
    W. Mu, D.H. Liu, C.L. Zhong, Microporous Mesoporous Mater 143, 66 (2011)CrossRefGoogle Scholar
  19. 19.
    L.M. Wu, J. Xiao, Y. Wu, S.K. Xian, G. Miao, H.H. Wang, Z. Li, Langmuir 30, 1080 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Li, L.J. Wang, H.L. Fan, J. Shangguan, H. Wang, J. Mi, Energy Fuels 29, 298 (2014)CrossRefGoogle Scholar
  21. 21.
    X.L. Wang, H.L. Fan, Z. Tian, E.Y. He, J. Shangguan, Appl. Surf. Sci. 289, 107 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Zhiping, Taiyuan University of Technology, Taiyuan (2016)Google Scholar
  23. 23.
    B. Supronowicz, A. Mavrandonakis, T. Heine, J. Phys. Chem. C 117, 14570 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Schlichte, T. Kratzke, S. Kaskel, Microporous Mesoporous Mater 73, 81 (2004)CrossRefGoogle Scholar
  25. 25.
    L. Hamon, E. Jolimaître, G.D. Pringruber, Ind. Eng. Chem. Res. 49, 7497 (2010)CrossRefGoogle Scholar
  26. 26.
    S.K. Nath, J. Phys. Chem. B 107, 9498 (2003)CrossRefGoogle Scholar
  27. 27.
    Q.Y. Yang, C.L. Zhong, J. Phys. Chem. B 110, 17776 (2006)CrossRefGoogle Scholar
  28. 28.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.M. Millam, Gaussian 09, Revision A. 02 (Gaussian Inc., Wallingford CT, 2003)Google Scholar
  29. 29.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)CrossRefGoogle Scholar
  30. 30.
    Q.Y. Yang, C.L. Zhong, Chem. Phys. Chem. 7, 1417 (2006)CrossRefGoogle Scholar
  31. 31.
    A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skid, J. Am. Chem. Soc. 114, 10024 (1992)CrossRefGoogle Scholar
  32. 32.
    L. Grajciar, P. Nachtigall, O. Bludský, M. Rubeš, J. Chem. Theor. Comput. 11, 230 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Liu, Y.F. Wu, F. Xu, J. Xiao, Q.B. Xia, Z. Li, J. Chem. Eng. 67, 1942 (2016)Google Scholar
  34. 34.
    M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987)Google Scholar
  35. 35.
    J. Yu, L.H. Xie, J.R. Li, Y.G. Ma, J.M. Seminario, P.B. Balbuena, Chem. Rev. (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Hong-Yan Zhang
    • 1
  • Zhen-Rong Zhang
    • 2
  • Chao Yang
    • 1
  • Li-Xia Ling
    • 1
  • Bao-Jun Wang
    • 1
  • Hui-Ling Fan
    • 1
  1. 1.State Key Laboratory of Coal Science and Technology, Co-founded by Shanxi Province and the Ministry of Science and Technology, Institute for Chemical Engineering of CoalTaiyuan University of TechnologyTaiyuanChina
  2. 2.Institute of Applied ChemicalTaiyuanChina

Personalised recommendations