Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites

  • S. Asiri
  • S. Güner
  • A. Demir
  • A. Yildiz
  • A. Manikandan
  • A. Baykal


Cu2+ ion substituted nanocrystalline BaFe12O19 [Ba1 − xCuxFe12O19 (0.0 ≤ x ≤ 0.5)] hexaferrite powders were synthesized by sol–gel combustion route and its effects on structure, morphology and magnetic properties of barium hexaferrite (BaFe12O19) were presented. X-Ray Powder Diffraction (XRD), Scanning Electron Microscopy (HR-SEM), Transmission Electron Microscopy (HR-TEM) and Fourier Transform Infrared (FT-IR) analyses revealed the M-type hexagonal structure of all samples. Vibrating sample magnetometer (VSM) analyses showed that all samples have strong ferromagnetic behavior at room temperature. The crystallite size varies in a range of 23.30–35.12 nm. Both HR-SEM and HR-TEM analyses confirmed the hexagonal morphology for products. A minimum of 40.49 and a maximum of 54.36 emu/g estimated specific saturation magnetization (σs) were observed for Ba0.5Cu0.5Fe12O19 and Ba0.9Cu0.1Fe12O19 NPs, respectively. The remnant magnetization (σr) has a minimum value of 21.27 emu/g belonging to Ba0.5Cu0.5Fe12O19 and has a maximum value of 28.15 emu/g belonging to Ba0.7Cu0.3Fe12O19 NPs. The coercive fields are between 1726 Oe and 2853 Oe. K eff (calculated effective anisotropy constants) is changing from 2.31 × 105 to 3.23 × 105 Ergs/g. It was observed that the strong magneto-crystalline anisotropy fields, (H a ) above 11.0 kOe for all samples which confirmed that all samples are hard magnet. Due to their small crystallite size (smaller than 50 nm) and high saturation magnetization, Ba1 − xCuxFe12O19 (0.0 ≤ x ≤ 0.5) nanoparticles can be employed as magnetic recording materials.


Barium hexaferrites Magnetic properties Morphology Hard ferrites 


  1. 1.
    I. Auwal, A. Baykal, H. Güngüneş, S.E. Shirsath, Structural investigation and hyperfine interactions of BaBixLaxFe12–2xO19 (0.0 ≤ x ≤ 0.5) hexaferrites. Ceram. Int. 42, 3380–3387 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Trukhanov, S. Trukhanov, L. Panina, V. Kostishyn, I. Kazakevich, A.V. Trukhanov, E. Trukhanova, V. Natarov, V. Turchenko, M. Salem, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Baykal, I. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater. 430, 29–35 (2017)CrossRefGoogle Scholar
  4. 4.
    V.N. Dhage, M. Mane, A. Keche, C. Birajdar, K. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406, 789–793 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Structural and magnetic properties of conventional and microwave treated Ni–Zr doped barium strontium hexaferrite. Mater. Res. Bull. 47, 188–192 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Chang, S. Kangning, C. Pengfei, Microwave absorption properties of Ce-substituted M-type barium ferrite. J. Magn. Magn. Mater. 324, 802–805 (2012)CrossRefGoogle Scholar
  7. 7.
    R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Kumar, A. Gaur, R. Kotnala, Magneto-electric response in Pb substituted M-type barium-hexaferrite. Ceram. Int. 43, 1180–1185 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Mali, A. Ataie, Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method. Ceram. Int. 30, 1979–1983 (2004)CrossRefGoogle Scholar
  10. 10.
    Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)CrossRefGoogle Scholar
  11. 11.
    M.N. Ashiq, M.J. Iqbal, M. Najam-ul-Haq, P.H. Gomez, A.M. Qureshi, Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices. J. Magn. Magn. Mater. 324, 15–19 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Karmakar, B. Mondal, M. Pal, K. Mukherjee, Acetone and ethanol sensing of barium hexaferrite particles: a case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators B 190, 627–633 (2014)CrossRefGoogle Scholar
  13. 13.
    C. Valero-Luna, S. Palomares-Sanchéz, F. Ruiz, Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal. Today 266, 110–119 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, T. Sakai, T. Chen, S.D. Yoon, A.L. Geiler, C. Vittoria, V.G. Harris, Oriented barium hexaferrite thick films with narrow ferromagnetic resonance linewidth. Appl. Phys. Lett. 88, 062516 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route. Scripta Mater. 53, 1065–1070 (2005)CrossRefGoogle Scholar
  16. 16.
    D.-H. Chen, Y.-Y. Chen, Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid. J. Colloid. Interface Sci. 235, 9–14 (2001)CrossRefGoogle Scholar
  17. 17.
    X.X. Liu, J.M. Bai, F.L. Wei, Z. Yang, La–Zn substituted hexagonal Sr ferrite thin films for high density magnetic recording. J. Appl. Phys. 87, 2503–2506 (2000)CrossRefGoogle Scholar
  18. 18.
    M. El-Hilo, H. Pfeiffer, K. O’Grady, W. Schüppel, E. Sinn, P. Görnert, M. Rösler, D.P. Dickson, R.W. Chantrell, Magnetic properties of barium hexaferrite powders. J. Magn. Magn. Mater. 129, 339–347 (1994)CrossRefGoogle Scholar
  19. 19.
    V. Sankaranarayanan, D. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magn. Magn. Mater. 153, 337–346 (1996)CrossRefGoogle Scholar
  20. 20.
    S. Chawla, R. Mudsainiyan, S. Meena, S. Yusuf, Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12–2x)O19, J. Magn. Magn. Mater. 350, 23–29 (2014)CrossRefGoogle Scholar
  21. 21.
    K.S. Martirosyan, D. Luss, Fabrication of metal oxide nanoparticles by highly exothermic reactions. Chem. Eng. Technol. 32, 1376–1383 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Singhal, K. Kaur, S. Jauhar, S. Bhukal, S. Bansal, Structural and magnetic properties of BaCoxFe12xO19 (x = 0.2, 0.4, 0.6, &1. 0) nanoferrites synthesized via citrate sol-gel method. World J. Condens. Matter. Phys. 1, 101 (2011)CrossRefGoogle Scholar
  23. 23.
    Z. Durmus, A comparative study on magnetostructural properties of barium hexaferrite powders prepared by polyethylene glycol. J. Nanomater. 2014, 212 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Baykal, H. Güngüneş, H. Sözeri, M. Amir, I. Auwal, S. Asiri, S. Shirsath, A.D. Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites. Ceram. Int. 43, 15486–15492 (2017)CrossRefGoogle Scholar
  25. 25.
    S. El-Sayed, T. Meaz, M. Amer, H. El, Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Demir, S. Güner, Y. Bakis, S. Esir, A. Baykal, Magnetic and optical properties of Mn1– xZnxFe2O4 nanoparticles. J. Inorg. Organomet. Polym. Mater. 24, 729–736 (2014)CrossRefGoogle Scholar
  27. 27.
    E.P. Wohlfarth, Ferromagnetic materials : a handbook on the properties of magnetically ordered substances, vol. 3 (North-Holland, Amsterdam, 1982)Google Scholar
  28. 28.
    B.D. Cullity, C.D. Graham, Introduction to magnetic materials. (Wiley, Hoboken, 2009)Google Scholar
  29. 29.
    M. Rashad, I. Ibrahim, Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method. J. Magn. Magnetic Mater. 323, 2158–2164 (2011)CrossRefGoogle Scholar
  30. 30.
    B. Shirk, W. Buessem, Temperature dependence of Ms and K 1 of BaFe12O19 and SrFe12O19 single crystals. J. Appl. Phys. 40, 1294–1296 (1969)CrossRefGoogle Scholar
  31. 31.
    A. Hodaei, A. Ataie, E. Mostafavi, Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles. J. Alloys Compd. 640, 162–168 (2015)CrossRefGoogle Scholar
  32. 32.
    Z. Zi, Y. Sun, X. Zhu, Z. Yang, W. Song, Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320, 2746–2751 (2008)CrossRefGoogle Scholar
  33. 33.
    B. Rai, S. Mishra, V. Nguyen, J. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloys Compd. 550, 198–203 (2013)CrossRefGoogle Scholar
  34. 34.
    W.F. Brown Jr., Theory of the approach to magnetic saturation. Phys. Rev. 58, 736 (1940)CrossRefGoogle Scholar
  35. 35.
    M. Amir, M. Geleri, S. Güner, A. Baykal, H. Sözeri, Magneto optical properties of FeBxFe2–xO4 nanoparticles. J. Inorg. Organomet. Polym. Mater. 25, 1111–1119 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Sadat, R. Patel, J. Sookoor, S.L. Bud’ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.M. Pauletti, D.B. Mast, Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater. Sci. Eng. 42, 52–63 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Chaudhury, S. Rakshit, S. Parida, Z. Singh, K.S. Mudher, V. Venugopal, Studies on structural and thermo-chemical behavior of MFe12O19 (s)(M = Sr, Ba and Pb) prepared by citrate–nitrate gel combustion method. J. Alloys Compd. 455, 25–30 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • S. Asiri
    • 1
  • S. Güner
    • 2
  • A. Demir
    • 3
  • A. Yildiz
    • 4
  • A. Manikandan
    • 5
  • A. Baykal
    • 1
  1. 1.Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faysal UniversityDammamSaudi Arabia
  2. 2.Institute of Physics (IA)RWTH Aachen UniversityAachenGermany
  3. 3.Department of Chemistryİstanbul Medeniyet UniversityÜsküdarTurkey
  4. 4.Department of Textile EngineeringNamık Kemal UniversityÇorluTurkey
  5. 5.Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER)Bharath UniversityChennaiIndia

Personalised recommendations