Type II Heterostructures: The Way Towards Improved Photoelectrochemical Activity of Graphitic Carbon Nitride

Abstract

Photoelectrochemical (PEC) water splitting is promising approach of solar energy conversion. Graphitic carbon nitride can be given as an example of metal-free and cheap semiconducting material for photoelectrochemical reactions however its activity is very low, probably due to high rate of unfavorable charge carriers recombination. Type II heterostructure, graphitic carbon nitride–copper oxide (g-C3N4 and CuO), showed improved photoelectrochemical activity in comparison with neat g-C3N4. Visible-light irradiated composite generates cathodic photocurrents under middle bias and therefore it can be used as a photocathode for water splitting with hydrogen formation. The band bending existing in type II heterostructures drives the photogenerated electrons and holes to move in opposite directions, resulting in a spatial separation of the photogenerated charge carriers on different sides of heterojunction. Lower recombination rate and higher activity are the overall effects. Moreover, by using copper based underlayer (metallic copper) or overlayer (copper iodide) the PEC activity grows. In particular CuI@g-C3N4_CuO showed the highest photocurrent density and the “relax time” in dark conditions has an noticeable influence on the further increase in activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Aresta, A. Dibenedetto, E. Quaranta, J. Catal. 343, 2 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    R. Li, Chin. J. Catal. 38, 5 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, Appl. Catal. B 178, 170 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    F. Malara, S. Carallo, E. Rotunno, L. Lazzarini, E. Piperopoulos, C. Milone, A. Naldoni, ACS Catal. 7, 4786 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    T. Baran, S. Wojtyła, C. Lenardi, A. Vertova, P. Ghigna, E. Achilli, M. Fracchia, S. Rondinini, A. Minguzzi, ACS Appl. Mater. Interfaces 8, 21250 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    U. Shaislamov, H.-J. Lee, J. Korean Phys. Soc. 69, 1242 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    A.A. Dubale, A.G. Tamirat, H.-M. Chen, T.A. Berhe, C.-J. Pan, W.-N. Su, B.-J. Hwang, J. Mater. Chem. A 4, 2205 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    S. Wojtyła, T. Baran, J. Inorg. Organomet. Polym. Mater. 27, 436 (2017)

    Article  Google Scholar 

  9. 9.

    Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, srep35158 (2016)

    Article  Google Scholar 

  10. 10.

    J.S. Kim, J.W. Oh, S.I. Woo, Catal. Today 293, 8 (2017)

    Article  Google Scholar 

  11. 11.

    M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang, Z. Wang, M. Yang, W.F. Ip, C.T. Kwok, X. Shi, Z. Lu, S. Wang, X. Wang, H. Pan, J. Mater. Chem. A 5, 16748 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    S. Martha, A. Nashim, K.M. Parida, J. Mater. Chem. A 1, 7816 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Nanoscale 8, 2249 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Nano-Micro Lett. 9, 47 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    L. Ye, S. Chen, Appl. Surf. Sci. 389, 1076 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    G. Dong, Y. Zhang, Q. Pan, J. Qiu, J. Photochem. Photobiol. C 20, 33 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    F. Yang, M. Lublow, S. Orthmann, C. Merschjann, T. Tyborski, M. Rusu, S. Kubala, A. Thomas, R. Arrigo, M. Hävecker, T. Schedel-Niedrig, ChemSusChem 5, 1227 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Dong, Y. Chen, P. Jiang, G. Wang, X. Wu, R. Wu, RSC Adv. 6, 7465 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, W. Macyk, ChemSusChem 9, 2933 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    S. Kakuta, T. Abe, Electrochem. Solid-State Lett. 12, P1 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Zhang, T. Mori, L. Niu, J. Ye, Energy Environ. Sci. 4, 4517 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    M.S. Prévot, X.A. Jeanbourquin, W.S. Bourée, F. Abdi, D. Friedrich, R. van de Krol, N. Guijarro, F. Le Formal, K. Sivula, Chem. Mater. 29, 4952 (2017)

    Article  Google Scholar 

  24. 24.

    S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. van de Krol, Chem. Mater. 28, 4231 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    X. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, T. Jin, Q. Wu, M. Xiang, M. Zhang, Int. J. Hydrog. Energy 39, 7686 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Shen, X. Guo, X. Bo, Y. Wang, X. Guo, M. Xie, X. Guo, Appl. Surf. Sci. 396, 933 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5, 8326 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Centre, Poland—Project SONATA 2016/21/D/ST4/00221.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomasz Baran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wojtyła, S., Szmit, K. & Baran, T. Type II Heterostructures: The Way Towards Improved Photoelectrochemical Activity of Graphitic Carbon Nitride. J Inorg Organomet Polym 28, 492–499 (2018). https://doi.org/10.1007/s10904-017-0733-3

Download citation

Keywords

  • g-C3N4
  • Inorganic composites
  • Photocathode
  • PEC water splitting
  • Copper oxides